
Graphene: A New Protocol 
for Block Propagation 
Using Set Reconciliation

A. Pinar Ozisik
George Bissias

Gavin Andresen
Amir Houmansadr

Brian Neil Levine

(c) 2017 All Rights Reserved by the authors. 



U N I V E R S I T Y  O F  M A S S A C H U S E T T S  A M H E R S T

Problem Definition
• This presentation is focused on relaying information quickly to a neighbor.  

• on the fast Relay Network or the p2p network. 

• It’s about avoiding sending a lot of data between peers, like so:

Alice Bob

has 
block

wants 
block

mempool
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Problem Definition
• This presentation is focused on relaying information quickly to a neighbor.  
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• This presentation is focused on relaying information quickly to a neighbor.  

• on the fast Relay Network or the p2p network. 
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Problem Definition

• Block announcements propagate faster when they are smaller. 

• Faster propagation means less orphaning, which means mining is efficient. 

• This isn’t a presentation about reducing the size of the stored blockchain. 

Alice Bob

inv
getdata

header, full txns

has 
block

wants 
block

mempool
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Results
• Graphene’s block announcements are ⅒ the size of current methods.

• No increase in roundtrip time. 
• Not a significant use of storage or CPU. 

• Combines two known tools from set reconciliation literature in a nifty way.  
•  Bloom Filters and IBLTs 

• Why does it work? We are optimizing Bitcoin’s special case:  
• Everyone needs to know everything. 
• Blocks are comprised of transactions that everyone should have heard already. 
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Overview
• A series of protocols: 

• Compact Blocks 
• Xtreme Thin Blocks 
• Soot  [fake] 
• IBLTs 
• Graphene
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Protocol 1: Compact Blocks

• We don’t need to send the full transactions.  

• We can send just the 2xSHA256 (32-byte) transaction IDs.  

• And we only need the first 5 or 6 bytes. Odds of mistake are 1 in a trillion.

Alice Bob

inv
getdatahas 

block
wants 
block

BIP 152  
Matt Corallo

mempool
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Protocol 1: Compact Blocks

• We don’t need to send the full transactions.  

• We can send just the 2xSHA256 (32-byte) transaction IDs.  

• And we only need the first 5 or 6 bytes. Odds of mistake are 1 in a trillion 

• Now a 1MB block with can be expressed in 80+4200*5 = 21KB 
• An 8MB block reduces to 80+4200*8*5 = 164KB

Alice Bob
header, txnIDs

getdata
inv

has 
block

wants 
block

mempool

BIP 152  
Matt Corallo
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Evaluation
• Linear growth with the 

number of transactions 
included in the block. 

• Size is independent of 
mempool.
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https://bitcoincore.org/en/2016/06/07/compact-blocks-faq/
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Protocol 2: Bloom Filters
• Can we do better? Yes! 

• Our neighbors already have these transactions IDs.  

• They are likely only missing a few. 

• Alice can each express the set of transactions in the block or her mempool 
as a Bloom Filter.  

• Bob could do the same thing! 

• Bloom filters allow us to quickly check if an item is a member of a set.
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Bloom Filter: Insertion
   [0]     [1]       [2]      [3]       [4]       [5]      [6]

0 0 0 0 0 0 0

B. Bloom: Space/Time Trade-offs in Hash Coding with Allowable Errors.  
Communications of the ACM 13(7), 422–426 (Jul 1970) 
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Bloom Filter: Insertion
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H2(txn2) = 4
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Bloom Filter: Insertion
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Bloom Filter: Insertion
   [0]     [1]       [2]      [3]       [4]       [5]      [6]

insert: txn1
H1(txn1) = 1  
H2(txn1) = 4

0 0 0 0 0 0 01 1
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insert: txn2
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1 1
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1

Bloom Filters: Check
   [0]     [1]       [2]      [3]       [4]       [5]      [6]

  0 0 0 011
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1

Bloom Filters: Check
   [0]     [1]       [2]      [3]       [4]       [5]      [6]

Is txn1 in the set? 
H1(txn1) = 1, H2(txn1) = 4

cell 1 = 1
cell 4 = 1

Yes!

  0 0 0 011

True Positive
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Bloom Filters: Check
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Yes!
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Is txn3 in the set? 
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No!

Is txn4 in the set? 
H1(txn4) = 0, H2(txn4) = 1
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Yes!
True Positive True Negative False Positive

False Negatives are not possible. 

The False Positive Rate is tunable: More bits will lower the FPR.
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Protocol 2: Xtreme Thinblocks

• We are sending all txnIDs and we are sending a Bloom Filter. 

• This is more data across the network than Compact Blocks.

Alice

has 
block

Bob

wants 
block

mempool

Peter Tschipper
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Protocol 2: Xtreme Thinblocks

• We are sending all txnIDs and we are sending a Bloom Filter. 

• This is more data across the network than Compact Blocks.

getdata, Bloom(mempool)
inv
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wants 
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Peter Tschipper
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Protocol 2: Xtreme Thinblocks

• We are sending all txnIDs and we are sending a Bloom Filter. 

• This is more data across the network than Compact Blocks.

header, txnIDs

getdata, Bloom(mempool)
inv

Alice

has 
block

Bob

wants 
block

mempool

Peter Tschipper
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Protocol 3: Soot

• Soot is not a real protocol… 

• Send INV for each TXNs in the block 
ahead of the block INV.  

• if they haven’t already been sent or 
received.

Alice

has 
block

Bob

wants 
block

mempool

• We need a low FPR for the 
Sender’s Bloom filter.  

• Can’t base it on size of the block! 

• Let m be the number of transactions 
in the mempool.
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• Send INV for each TXNs in the block 
ahead of the block INV.  
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getdata, m
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Bob

wants 
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fpr=1/m
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Protocol 3: Soot

• Soot is not a real protocol… 

• Send INV for each TXNs in the block 
ahead of the block INV.  

• if they haven’t already been sent or 
received.

getdata, m
inv

Alice

has 
block

Bob

wants 
block

(prioritize TXN inv’s)

mempoolheader, S=Bloom(txnIDs)
fpr=1/m

• We need a low FPR for the 
Sender’s Bloom filter.  

• Can’t base it on size of the block! 

• Let m be the number of transactions 
in the mempool.

Block = mempool found in S
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Protocol 3: Soot

Bob

wants 
block

mempool
getdata, m

inv
(prioritize TXN inv’s)

Block = mempool found in S
Alice

has 
block

header, S=Bloom(txnIDs)
fpr=1/m

• If FPR=1/m, then we expect 1 
transaction from mempool to 
falsely appear to be in the block. 

• Block reconstruction will fail every 
block!
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Protocol 3: Soot

• If FPR=1/m, then we expect 1 
transaction from mempool to 
falsely appear to be in the block. 

• Block reconstruction will fail every 
block! 

• If FPR=1/(100m), once every 100 
blocks, the receiver will fail to 
reconstruct the block. 

• In that case, fall back to Compact 
Blocks. 

Bob

wants 
block

mempool
getdata, m

inv
(prioritize TXN inv’s)

Block = mempool found in S
Alice

has 
block

header, S=Bloom(txnIDs)
fpr=1/m
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Performance of 1/(100m) Soot

Performance now depends on size of the mempool.
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Performance of 1/(100m) Soot

Performance now depends on size of the mempool.
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Invertible Bloom Lookup Tables (IBLTs)
• Can we do better? Yes! 

• M. Goodrich and M. Mitzenmacher  
"Invertible Bloom Lookup Tables” 
Proc. Conf. on Comm., Control, and Computing. pp. 792–799, Sept 2011  

• D. Eppstein, M. Goodrich, F. Uyeda, G. Varghese 
"What's the difference?: efficient set reconciliation without prior context."  
Prof. ACM SIGCOMM 2011
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Invertible Bloom Lookup Tables (IBLTs)
• Invertible Bloom Lookup Tables are a generalization of Bloom Filters.  

• Instead of a bit, cells include a count and actual content.

A,B, C, D, 
E, F, G
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Invertible Bloom Lookup Tables (IBLTs)
• Invertible Bloom Lookup Tables are a generalization of Bloom Filters.  

• Instead of a bit, cells include a count and actual content.

A,B, C, D, 
E, F, G

• Special IBLT feature: 
• If you have two lists that differ by no more than ~15%, you can compare 

an IBLT of each list and recover the items that are different.  
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Invertible Bloom Lookup Tables (IBLTs)
• Invertible Bloom Lookup Tables are a generalization of Bloom Filters.  

• Instead of a bit, cells include a count and actual content.

A,B, C, D, 
E, F, G

A,B, C, X, 
E, F, G

— = +D 
-X

• Special IBLT feature: 
• If you have two lists that differ by no more than ~15%, you can compare 

an IBLT of each list and recover the items that are different.  
• The size of IBLTs does not depend on the original list. 
• The size depends on only the expected difference between the two lists.
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Protocol 4: IBLTs

• Works very well until the receiver’s 
mempool size is much larger than the 
block. 

• The size of the IBLT will depend on 
the symmetric difference between the 
block and the receiver’s mempool. 

• But we don’t know this value and don’t 
want to waste roundtrip times failing.

Alice

has 
block

Bob

wants 
block

Gavin Andresen; 
Rosenbaum and Russell

mempool
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Protocol 4: IBLTs

• Works very well until the receiver’s 
mempool size is much larger than the 
block. 

• The size of the IBLT will depend on 
the symmetric difference between the 
block and the receiver’s mempool. 

• But we don’t know this value and don’t 
want to waste roundtrip times failing.

getdata
inv

Alice

has 
block

Bob

wants 
block

(prioritize TXN inv’s)

I’= IBLT(mempool) 
if (I-I’) decodes, DONE 

else repeat with larger IBLT

header, I=IBLT(txnIDs)

Gavin Andresen; 
Rosenbaum and Russell

mempool
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Performance
• Bytes are proportional to 

symmetric difference 
between block and 
mempool. 

• Can we do better? Yes!
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Protocol 5: Graphene
• It’s expensive to make Bloom Filters when symmetric difference is high. 

It’s expensive to make IBLTs when symmetric difference is high. 

• Solution: 
• use a Bloom Filter to reduce the symmetric difference between block and 

mempool.
• use the IBLT to recover from small errors in the Bloom Filter

• We don’t need a very low FPR for the Bloom Filter because the IBLT will help 
us recover. 

• Recall that the size of the IBLT is based on only the difference between two lists.
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Optimally Small
• We shrink the Bloom filter to an FPR=1/m.  

• We expect one false positive. 
• Make an IBLT expecting just one difference. It will be a small IBLT. 
• The output of comparing the two IBLTs will be exactly which txnID is the false positive. 

• It turns out, we can parameterize the FPR and IBLT together so that the sum 
bytes are optimally small.  

• Roughly, given a block of n transactions and a mempool of m transactions,  
the FPR that provides the optimally small sized of IBLT and BF is   
 
FPR = 
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Protocol 5: Graphene

• We ensure that the IBLT decodes by setting the FPR correctly. 
• Decode failure is 1 in a 1000.

inv

Alice

has 
block

Bob

wants 
block

(prioritize TXN inv’s)

mempool
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Protocol 5: Graphene

• We ensure that the IBLT decodes by setting the FPR correctly. 
• Decode failure is 1 in a 1000.

getdata, m
inv

Alice

has 
block

Bob

wants 
block

(prioritize TXN inv’s)

m’ = mempool found in S 
I’= IBLT(m’) 
if I-I’ decodes, DONE;  
else repeat with larger IBLT

header, S=Bloom(txnIDs), 
I=IBLT(txnIDs) mempool
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Graphene Performance
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Graphene Performance
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Conclusions
• Graphene’s block announcements are ⅒ the size of current methods.

• Fits within one IP packet  
• No increase in roundtrip time of Compact Blocks 
• Not a significant use of storage or CPU. 

• Combines two known tools from set reconciliation literature in a nifty way.  
•  Bloom Filters and IBLTs 

• PDF: http:forensics.cs.umass.edu/graphene
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