
Graphene: A New Protocol
for Block Propagation
Using Set Reconciliation

A. Pinar Ozisik
George Bissias

Gavin Andresen
Amir Houmansadr

Brian Neil Levine

(c) 2017 All Rights Reserved by the authors.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Problem Definition
• This presentation is focused on relaying information quickly to a neighbor.

• on the fast Relay Network or the p2p network.

• It’s about avoiding sending a lot of data between peers, like so:

Alice Bob

has
block

wants
block

mempool

(c) 2017 All Rights Reserved by the authors.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Problem Definition
• This presentation is focused on relaying information quickly to a neighbor.

• on the fast Relay Network or the p2p network.

• It’s about avoiding sending a lot of data between peers, like so:

Alice Bob

inv
has

block
wants
block

mempool

(c) 2017 All Rights Reserved by the authors.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Problem Definition
• This presentation is focused on relaying information quickly to a neighbor.

• on the fast Relay Network or the p2p network.

• It’s about avoiding sending a lot of data between peers, like so:

Alice Bob

getdata
inv

has
block

wants
block

mempool

(c) 2017 All Rights Reserved by the authors.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Problem Definition
• This presentation is focused on relaying information quickly to a neighbor.

• on the fast Relay Network or the p2p network.

• It’s about avoiding sending a lot of data between peers, like so:

Alice Bob
header, full txns

getdata
inv

has
block

wants
block

mempool

(c) 2017 All Rights Reserved by the authors.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Problem Definition
• This presentation is focused on relaying information quickly to a neighbor.

• on the fast Relay Network or the p2p network.

• It’s about avoiding sending a lot of data between peers, like so:

Alice Bob

inv
getdata

header, full txns

has
block

wants
block

mempool

(c) 2017 All Rights Reserved by the authors.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Problem Definition

• Block announcements propagate faster when they are smaller.

• Faster propagation means less orphaning, which means mining is efficient.

• This isn’t a presentation about reducing the size of the stored blockchain.

Alice Bob

inv
getdata

header, full txns

has
block

wants
block

mempool

(c) 2017 All Rights Reserved by the authors.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Results
• Graphene’s block announcements are ⅒ the size of current methods.

• No increase in roundtrip time.
• Not a significant use of storage or CPU.

• Combines two known tools from set reconciliation literature in a nifty way.
• Bloom Filters and IBLTs

• Why does it work? We are optimizing Bitcoin’s special case:
• Everyone needs to know everything.
• Blocks are comprised of transactions that everyone should have heard already.

(c) 2017 All Rights Reserved by the authors.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Overview
• A series of protocols:

• Compact Blocks
• Xtreme Thin Blocks
• Soot [fake]
• IBLTs
• Graphene

(c) 2017 All Rights Reserved by the authors.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Protocol 1: Compact Blocks

• We don’t need to send the full transactions.

• We can send just the 2xSHA256 (32-byte) transaction IDs.

• And we only need the first 5 or 6 bytes. Odds of mistake are 1 in a trillion.

Alice Bob

inv
getdatahas

block
wants
block

BIP 152  
Matt Corallo

mempool

(c) 2017 All Rights Reserved by the authors.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Protocol 1: Compact Blocks

• We don’t need to send the full transactions.

• We can send just the 2xSHA256 (32-byte) transaction IDs.

• And we only need the first 5 or 6 bytes. Odds of mistake are 1 in a trillion.

Alice Bob

inv
getdatahas

block
wants
block

BIP 152  
Matt Corallo

mempoolheader, txnIDs

(c) 2017 All Rights Reserved by the authors.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Protocol 1: Compact Blocks

• We don’t need to send the full transactions.

• We can send just the 2xSHA256 (32-byte) transaction IDs.

• And we only need the first 5 or 6 bytes. Odds of mistake are 1 in a trillion

• Now a 1MB block with can be expressed in 80+4200*5 = 21KB
• An 8MB block reduces to 80+4200*8*5 = 164KB

Alice Bob
header, txnIDs

getdata
inv

has
block

wants
block

mempool

BIP 152  
Matt Corallo

(c) 2017 All Rights Reserved by the authors.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Evaluation
• Linear growth with the

number of transactions
included in the block.

• Size is independent of
mempool.

●●●
●

●

●

●

●

●

0 8000 16000 24000 32000 40000

0
20
40
60
80

100
120
140
160
180
200

0 1 2 3 4 5 6 7 8 9 10

txns

Original Block Size (MB)

R
es

ul
tin

g
Bl

oc
k

(K
B)

Protocol ●● Compact Blocks

●●●
●

●

●

●

●

●

0 8000 16000 24000 32000 40000

0
20
40
60
80

100
120
140
160
180
200

0 1 2 3 4 5 6 7 8 9 10

txns

Original Block Size (MB)

R
es

ul
tin

g
Bl

oc
k

(K
B)

Protocol ●● Compact Blocks

https://bitcoincore.org/en/2016/06/07/compact-blocks-faq/

(c) 2017 All Rights Reserved by the authors.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Protocol 2: Bloom Filters
• Can we do better? Yes!

• Our neighbors already have these transactions IDs.

• They are likely only missing a few.

• Alice can each express the set of transactions in the block or her mempool 
as a Bloom Filter.

• Bob could do the same thing!

• Bloom filters allow us to quickly check if an item is a member of a set.

(c) 2017 All Rights Reserved by the authors.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Bloom Filter: Insertion
 [0] [1] [2] [3] [4] [5] [6]

0 0 0 0 0 0 0

B. Bloom: Space/Time Trade-offs in Hash Coding with Allowable Errors.  
Communications of the ACM 13(7), 422–426 (Jul 1970)

(c) 2017 All Rights Reserved by the authors.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Bloom Filter: Insertion
 [0] [1] [2] [3] [4] [5] [6]

insert: txn1
H1(txn1) = 1  
H2(txn1) = 4

0 0 0 0 0 0 0

B. Bloom: Space/Time Trade-offs in Hash Coding with Allowable Errors.  
Communications of the ACM 13(7), 422–426 (Jul 1970)

(c) 2017 All Rights Reserved by the authors.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Bloom Filter: Insertion
 [0] [1] [2] [3] [4] [5] [6]

insert: txn1
H1(txn1) = 1  
H2(txn1) = 4

0 0 0 0 0 0 01

B. Bloom: Space/Time Trade-offs in Hash Coding with Allowable Errors.  
Communications of the ACM 13(7), 422–426 (Jul 1970)

(c) 2017 All Rights Reserved by the authors.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Bloom Filter: Insertion
 [0] [1] [2] [3] [4] [5] [6]

insert: txn1
H1(txn1) = 1  
H2(txn1) = 4

0 0 0 0 0 0 01 1

B. Bloom: Space/Time Trade-offs in Hash Coding with Allowable Errors.  
Communications of the ACM 13(7), 422–426 (Jul 1970)

(c) 2017 All Rights Reserved by the authors.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Bloom Filter: Insertion
 [0] [1] [2] [3] [4] [5] [6]

insert: txn1
H1(txn1) = 1  
H2(txn1) = 4

0 0 0 0 0 0 01 1

B. Bloom: Space/Time Trade-offs in Hash Coding with Allowable Errors.  
Communications of the ACM 13(7), 422–426 (Jul 1970)

insert: txn2
H1(txn2) = 0  
H2(txn2) = 4

(c) 2017 All Rights Reserved by the authors.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Bloom Filter: Insertion
 [0] [1] [2] [3] [4] [5] [6]

insert: txn1
H1(txn1) = 1  
H2(txn1) = 4

0 0 0 0 0 0 01 1

B. Bloom: Space/Time Trade-offs in Hash Coding with Allowable Errors.  
Communications of the ACM 13(7), 422–426 (Jul 1970)

insert: txn2
H1(txn2) = 0  
H2(txn2) = 4

1

(c) 2017 All Rights Reserved by the authors.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Bloom Filter: Insertion
 [0] [1] [2] [3] [4] [5] [6]

insert: txn1
H1(txn1) = 1  
H2(txn1) = 4

0 0 0 0 0 0 01 1

B. Bloom: Space/Time Trade-offs in Hash Coding with Allowable Errors.  
Communications of the ACM 13(7), 422–426 (Jul 1970)

insert: txn2
H1(txn2) = 0  
H2(txn2) = 4

1 1

(c) 2017 All Rights Reserved by the authors.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

1

Bloom Filters: Check
 [0] [1] [2] [3] [4] [5] [6]

 0 0 0 011

(c) 2017 All Rights Reserved by the authors.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

1

Bloom Filters: Check
 [0] [1] [2] [3] [4] [5] [6]

Is txn1 in the set?
H1(txn1) = 1, H2(txn1) = 4

cell 1 = 1
cell 4 = 1

Yes!

 0 0 0 011

True Positive

(c) 2017 All Rights Reserved by the authors.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

1

Bloom Filters: Check
 [0] [1] [2] [3] [4] [5] [6]

Is txn1 in the set?
H1(txn1) = 1, H2(txn1) = 4

cell 1 = 1
cell 4 = 1

Yes!

 0 0 0 011

Is txn3 in the set?
H1(txn3) = 1, H2(txn3) = 5

cell 1 = 1
cell 5 = 0

No!
True Positive True Negative

(c) 2017 All Rights Reserved by the authors.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

1

Bloom Filters: Check
 [0] [1] [2] [3] [4] [5] [6]

Is txn1 in the set?
H1(txn1) = 1, H2(txn1) = 4

cell 1 = 1
cell 4 = 1

Yes!

 0 0 0 011

Is txn3 in the set?
H1(txn3) = 1, H2(txn3) = 5

cell 1 = 1
cell 5 = 0

No!

Is txn4 in the set?
H1(txn4) = 0, H2(txn4) = 1

cell 0 = 1
cell 1 = 1

Yes!
True Positive True Negative False Positive

(c) 2017 All Rights Reserved by the authors.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

1

Bloom Filters: Check
 [0] [1] [2] [3] [4] [5] [6]

Is txn1 in the set?
H1(txn1) = 1, H2(txn1) = 4

cell 1 = 1
cell 4 = 1

Yes!

 0 0 0 011

Is txn3 in the set?
H1(txn3) = 1, H2(txn3) = 5

cell 1 = 1
cell 5 = 0

No!

Is txn4 in the set?
H1(txn4) = 0, H2(txn4) = 1

cell 0 = 1
cell 1 = 1

Yes!
True Positive True Negative False Positive

False Negatives are not possible.

(c) 2017 All Rights Reserved by the authors.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

1

Bloom Filters: Check
 [0] [1] [2] [3] [4] [5] [6]

Is txn1 in the set?
H1(txn1) = 1, H2(txn1) = 4

cell 1 = 1
cell 4 = 1

Yes!

 0 0 0 011

Is txn3 in the set?
H1(txn3) = 1, H2(txn3) = 5

cell 1 = 1
cell 5 = 0

No!

Is txn4 in the set?
H1(txn4) = 0, H2(txn4) = 1

cell 0 = 1
cell 1 = 1

Yes!
True Positive True Negative False Positive

False Negatives are not possible.

The False Positive Rate is tunable: More bits will lower the FPR.

(c) 2017 All Rights Reserved by the authors.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Protocol 2: Xtreme Thinblocks

• We are sending all txnIDs and we are sending a Bloom Filter.

• This is more data across the network than Compact Blocks.

Alice

has
block

Bob

wants
block

mempool

Peter Tschipper

(c) 2017 All Rights Reserved by the authors.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Protocol 2: Xtreme Thinblocks

• We are sending all txnIDs and we are sending a Bloom Filter.

• This is more data across the network than Compact Blocks.

inv

Alice

has
block

Bob

wants
block

mempool

Peter Tschipper

(c) 2017 All Rights Reserved by the authors.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Protocol 2: Xtreme Thinblocks

• We are sending all txnIDs and we are sending a Bloom Filter.

• This is more data across the network than Compact Blocks.

getdata, Bloom(mempool)
inv

Alice

has
block

Bob

wants
block

mempool

Peter Tschipper

(c) 2017 All Rights Reserved by the authors.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Protocol 2: Xtreme Thinblocks

• We are sending all txnIDs and we are sending a Bloom Filter.

• This is more data across the network than Compact Blocks.

header, txnIDs

getdata, Bloom(mempool)
inv

Alice

has
block

Bob

wants
block

mempool

Peter Tschipper

(c) 2017 All Rights Reserved by the authors.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Protocol 3: Soot

• Soot is not a real protocol…

• Send INV for each TXNs in the block
ahead of the block INV.

• if they haven’t already been sent or
received.

Alice

has
block

Bob

wants
block

mempool

• We need a low FPR for the
Sender’s Bloom filter.

• Can’t base it on size of the block!

• Let m be the number of transactions
in the mempool.

(c) 2017 All Rights Reserved by the authors.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Protocol 3: Soot

• Soot is not a real protocol…

• Send INV for each TXNs in the block
ahead of the block INV.

• if they haven’t already been sent or
received.

Alice

has
block

Bob

wants
block

(prioritize TXN inv’s)

mempool

• We need a low FPR for the
Sender’s Bloom filter.

• Can’t base it on size of the block!

• Let m be the number of transactions
in the mempool.

(c) 2017 All Rights Reserved by the authors.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Protocol 3: Soot

• Soot is not a real protocol…

• Send INV for each TXNs in the block
ahead of the block INV.

• if they haven’t already been sent or
received.

inv

Alice

has
block

Bob

wants
block

(prioritize TXN inv’s)

mempool

• We need a low FPR for the
Sender’s Bloom filter.

• Can’t base it on size of the block!

• Let m be the number of transactions
in the mempool.

(c) 2017 All Rights Reserved by the authors.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Protocol 3: Soot

• Soot is not a real protocol…

• Send INV for each TXNs in the block
ahead of the block INV.

• if they haven’t already been sent or
received.

getdata, m
inv

Alice

has
block

Bob

wants
block

(prioritize TXN inv’s)

mempool

• We need a low FPR for the
Sender’s Bloom filter.

• Can’t base it on size of the block!

• Let m be the number of transactions
in the mempool.

(c) 2017 All Rights Reserved by the authors.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Protocol 3: Soot

• Soot is not a real protocol…

• Send INV for each TXNs in the block
ahead of the block INV.

• if they haven’t already been sent or
received.

getdata, m
inv

Alice

has
block

Bob

wants
block

(prioritize TXN inv’s)

mempoolheader, S=Bloom(txnIDs)
fpr=1/m

• We need a low FPR for the
Sender’s Bloom filter.

• Can’t base it on size of the block!

• Let m be the number of transactions
in the mempool.

(c) 2017 All Rights Reserved by the authors.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Protocol 3: Soot

• Soot is not a real protocol…

• Send INV for each TXNs in the block
ahead of the block INV.

• if they haven’t already been sent or
received.

getdata, m
inv

Alice

has
block

Bob

wants
block

(prioritize TXN inv’s)

mempoolheader, S=Bloom(txnIDs)
fpr=1/m

• We need a low FPR for the
Sender’s Bloom filter.

• Can’t base it on size of the block!

• Let m be the number of transactions
in the mempool.

Block = mempool found in S

(c) 2017 All Rights Reserved by the authors.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Protocol 3: Soot

Bob

wants
block

mempool
getdata, m

inv
(prioritize TXN inv’s)

Block = mempool found in S
Alice

has
block

header, S=Bloom(txnIDs)
fpr=1/m

• If FPR=1/m, then we expect 1
transaction from mempool to
falsely appear to be in the block.

• Block reconstruction will fail every
block!

(c) 2017 All Rights Reserved by the authors.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Protocol 3: Soot

• If FPR=1/m, then we expect 1
transaction from mempool to
falsely appear to be in the block.

• Block reconstruction will fail every
block!

• If FPR=1/(100m), once every 100
blocks, the receiver will fail to
reconstruct the block.

• In that case, fall back to Compact
Blocks.

Bob

wants
block

mempool
getdata, m

inv
(prioritize TXN inv’s)

Block = mempool found in S
Alice

has
block

header, S=Bloom(txnIDs)
fpr=1/m

(c) 2017 All Rights Reserved by the authors.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Performance of 1/(100m) Soot

Performance now depends on size of the mempool.

●●●●
●

●

●

●

●●●●
●

●

●

●

0 8000 16000 24000 32000 40000

0

50

100

150

200

0 1 2 3 4 5 6 7 8 9 10

txns

Original Block Size (MB)

R
es

ul
tin

g
Bl

oc
k

(K
B)

●● 100
1000

10000
100000

Compact Blocks

●●●●
●

●

●

●

●●●●
●

●

●

●

0 8000 16000 24000 32000 40000

0

50

100

150

200

0 1 2 3 4 5 6 7 8 9 10

txns

Original Block Size (MB)

R
es

ul
tin

g
Bl

oc
k

(K
B)

●● 100
1000

10000
100000

Compact Blocks

●●●●
●

●

●

●

●●●●
●

●

●

●

0 8000 16000 24000 32000 40000

0

50

100

150

200

0 1 2 3 4 5 6 7 8 9 10

txns

Original Block Size (MB)

R
es

ul
tin

g
Bl

oc
k

(K
B)

●● 100
1000

10000
100000

Compact Blocks

(c) 2017 All Rights Reserved by the authors.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Performance of 1/(100m) Soot

Performance now depends on size of the mempool.

●●●●
●

●

●

●

●●●●
●

●

●

●

0 8000 16000 24000 32000 40000

0

50

100

150

200

0 1 2 3 4 5 6 7 8 9 10

txns

Original Block Size (MB)

R
es

ul
tin

g
Bl

oc
k

(K
B)

●● 100
1000

10000
100000

Compact Blocks

●●●●
●

●

●

●

●●●●
●

●

●

●

0 8000 16000 24000 32000 40000

0

50

100

150

200

0 1 2 3 4 5 6 7 8 9 10

txns

Original Block Size (MB)

R
es

ul
tin

g
Bl

oc
k

(K
B)

●● 100
1000

10000
100000

Compact Blocks

●●●●
●

●

●

●

●●●●
●

●

●

●

0 8000 16000 24000 32000 40000

0

50

100

150

200

0 1 2 3 4 5 6 7 8 9 10

txns

Original Block Size (MB)

R
es

ul
tin

g
Bl

oc
k

(K
B)

●● 100
1000

10000
100000

Compact Blocks

●
●

●

●

●

●
●

●

●

●

0
2
4
6
8

10
12
14
16
18
20
22
24
26

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Original Block Size (MB)

R
es

ul
tin

g
Bl

oc
k

(K
B)

●● 100
1000

10000
100000

Compact Blocks

(c) 2017 All Rights Reserved by the authors.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Invertible Bloom Lookup Tables (IBLTs)
• Can we do better? Yes!

• M. Goodrich and M. Mitzenmacher  
"Invertible Bloom Lookup Tables” 
Proc. Conf. on Comm., Control, and Computing. pp. 792–799, Sept 2011

• D. Eppstein, M. Goodrich, F. Uyeda, G. Varghese 
"What's the difference?: efficient set reconciliation without prior context."  
Prof. ACM SIGCOMM 2011

(c) 2017 All Rights Reserved by the authors.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Invertible Bloom Lookup Tables (IBLTs)
• Invertible Bloom Lookup Tables are a generalization of Bloom Filters.

• Instead of a bit, cells include a count and actual content.

A,B, C, D,
E, F, G

(c) 2017 All Rights Reserved by the authors.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Invertible Bloom Lookup Tables (IBLTs)
• Invertible Bloom Lookup Tables are a generalization of Bloom Filters.

• Instead of a bit, cells include a count and actual content.

A,B, C, D,
E, F, G

• Special IBLT feature:
• If you have two lists that differ by no more than ~15%, you can compare

an IBLT of each list and recover the items that are different.

(c) 2017 All Rights Reserved by the authors.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Invertible Bloom Lookup Tables (IBLTs)
• Invertible Bloom Lookup Tables are a generalization of Bloom Filters.

• Instead of a bit, cells include a count and actual content.

A,B, C, D,
E, F, G

A,B, C, X,
E, F, G

• Special IBLT feature:
• If you have two lists that differ by no more than ~15%, you can compare

an IBLT of each list and recover the items that are different.

(c) 2017 All Rights Reserved by the authors.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Invertible Bloom Lookup Tables (IBLTs)
• Invertible Bloom Lookup Tables are a generalization of Bloom Filters.

• Instead of a bit, cells include a count and actual content.

A,B, C, D,
E, F, G

A,B, C, X,
E, F, G

— = +D 
-X

• Special IBLT feature:
• If you have two lists that differ by no more than ~15%, you can compare

an IBLT of each list and recover the items that are different.

(c) 2017 All Rights Reserved by the authors.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Invertible Bloom Lookup Tables (IBLTs)
• Invertible Bloom Lookup Tables are a generalization of Bloom Filters.

• Instead of a bit, cells include a count and actual content.

A,B, C, D,
E, F, G

A,B, C, X,
E, F, G

— = +D 
-X

• Special IBLT feature:
• If you have two lists that differ by no more than ~15%, you can compare

an IBLT of each list and recover the items that are different.
• The size of IBLTs does not depend on the original list.
• The size depends on only the expected difference between the two lists.

(c) 2017 All Rights Reserved by the authors.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Protocol 4: IBLTs

• Works very well until the receiver’s
mempool size is much larger than the
block.

• The size of the IBLT will depend on
the symmetric difference between the
block and the receiver’s mempool.

• But we don’t know this value and don’t
want to waste roundtrip times failing.

Alice

has
block

Bob

wants
block

Gavin Andresen; 
Rosenbaum and Russell

mempool

(c) 2017 All Rights Reserved by the authors.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Protocol 4: IBLTs

• Works very well until the receiver’s
mempool size is much larger than the
block.

• The size of the IBLT will depend on
the symmetric difference between the
block and the receiver’s mempool.

• But we don’t know this value and don’t
want to waste roundtrip times failing.

Alice

has
block

Bob

wants
block

(prioritize TXN inv’s)

Gavin Andresen; 
Rosenbaum and Russell

mempool

(c) 2017 All Rights Reserved by the authors.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Protocol 4: IBLTs

• Works very well until the receiver’s
mempool size is much larger than the
block.

• The size of the IBLT will depend on
the symmetric difference between the
block and the receiver’s mempool.

• But we don’t know this value and don’t
want to waste roundtrip times failing.

inv

Alice

has
block

Bob

wants
block

(prioritize TXN inv’s)

Gavin Andresen; 
Rosenbaum and Russell

mempool

(c) 2017 All Rights Reserved by the authors.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Protocol 4: IBLTs

• Works very well until the receiver’s
mempool size is much larger than the
block.

• The size of the IBLT will depend on
the symmetric difference between the
block and the receiver’s mempool.

• But we don’t know this value and don’t
want to waste roundtrip times failing.

getdata
inv

Alice

has
block

Bob

wants
block

(prioritize TXN inv’s)

Gavin Andresen; 
Rosenbaum and Russell

mempool

(c) 2017 All Rights Reserved by the authors.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Protocol 4: IBLTs

• Works very well until the receiver’s
mempool size is much larger than the
block.

• The size of the IBLT will depend on
the symmetric difference between the
block and the receiver’s mempool.

• But we don’t know this value and don’t
want to waste roundtrip times failing.

getdata
inv

Alice

has
block

Bob

wants
block

(prioritize TXN inv’s)

header, I=IBLT(txnIDs)

Gavin Andresen; 
Rosenbaum and Russell

mempool

(c) 2017 All Rights Reserved by the authors.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Protocol 4: IBLTs

• Works very well until the receiver’s
mempool size is much larger than the
block.

• The size of the IBLT will depend on
the symmetric difference between the
block and the receiver’s mempool.

• But we don’t know this value and don’t
want to waste roundtrip times failing.

getdata
inv

Alice

has
block

Bob

wants
block

(prioritize TXN inv’s)

I’= IBLT(mempool) 
if (I-I’) decodes, DONE

else repeat with larger IBLT

header, I=IBLT(txnIDs)

Gavin Andresen; 
Rosenbaum and Russell

mempool

(c) 2017 All Rights Reserved by the authors.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Performance
• Bytes are proportional to

symmetric difference
between block and
mempool.

• Can we do better? Yes!

●●●●
●

●

●●

●●

0 8000 16000 24000 32000 40000

0

50

100

150

200

250

300

0 1 2 3 4 5 6 7 8 9 10

txns

Original Block Size (MB)

R
es

ul
tin

g
Bl

oc
k

(K
B)

●● Compact Blocks
Mempool=100

Mempool=1000
Mempool=10000

(c) 2017 All Rights Reserved by the authors.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Protocol 5: Graphene
• It’s expensive to make Bloom Filters when symmetric difference is high. 

It’s expensive to make IBLTs when symmetric difference is high. 

• Solution:
• use a Bloom Filter to reduce the symmetric difference between block and

mempool.
• use the IBLT to recover from small errors in the Bloom Filter

• We don’t need a very low FPR for the Bloom Filter because the IBLT will help
us recover.

• Recall that the size of the IBLT is based on only the difference between two lists.

(c) 2017 All Rights Reserved by the authors.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Optimally Small
• We shrink the Bloom filter to an FPR=1/m.

• We expect one false positive.
• Make an IBLT expecting just one difference. It will be a small IBLT.
• The output of comparing the two IBLTs will be exactly which txnID is the false positive.

• It turns out, we can parameterize the FPR and IBLT together so that the sum
bytes are optimally small.

• Roughly, given a block of n transactions and a mempool of m transactions,  
the FPR that provides the optimally small sized of IBLT and BF is  
 
FPR =

(c) 2017 All Rights Reserved by the authors.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Protocol 5: Graphene

• We ensure that the IBLT decodes by setting the FPR correctly.
• Decode failure is 1 in a 1000.

inv

Alice

has
block

Bob

wants
block

(prioritize TXN inv’s)

mempool

(c) 2017 All Rights Reserved by the authors.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Protocol 5: Graphene

• We ensure that the IBLT decodes by setting the FPR correctly.
• Decode failure is 1 in a 1000.

getdata, m
inv

Alice

has
block

Bob

wants
block

(prioritize TXN inv’s)

mempool

(c) 2017 All Rights Reserved by the authors.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Protocol 5: Graphene

• We ensure that the IBLT decodes by setting the FPR correctly.
• Decode failure is 1 in a 1000.

getdata, m
inv

Alice

has
block

Bob

wants
block

(prioritize TXN inv’s)

header, S=Bloom(txnIDs), 
I=IBLT(txnIDs) mempool

(c) 2017 All Rights Reserved by the authors.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Protocol 5: Graphene

• We ensure that the IBLT decodes by setting the FPR correctly.
• Decode failure is 1 in a 1000.

getdata, m
inv

Alice

has
block

Bob

wants
block

(prioritize TXN inv’s)

m’ = mempool found in S
I’= IBLT(m’) 
if I-I’ decodes, DONE;  
else repeat with larger IBLT

header, S=Bloom(txnIDs), 
I=IBLT(txnIDs) mempool

(c) 2017 All Rights Reserved by the authors.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Graphene Performance

●

●

●

●

●

0 1000 2000 3000 4000

0
2
4
6
8

10
12
14
16
18
20
22
24
26

0
2
4
6
8
10
12
14
16
18
20
22
24
26

0.0 0.2 0.4 0.6 0.8 1.0

txns

Original Block Size (MB)

R
es

ul
tin

g
Bl

oc
k

(K
B)

R
esulting Block (KB)

●● Compact Blocks

Mempool=0

Mempool=100

Mempool=1000

Mempool=10000

Mempool=100000

(c) 2017 All Rights Reserved by the authors.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Graphene Performance

●●●
●

●

●

●●

●●

0 10000 20000 30000 40000

0

20

40

60

80

100

120

140

160

180

200

0

20

40

60

80

100

120

140

160

180

200

0 1 2 3 4 5 6 7 8 9 10

txns

Original Block Size (MB)

R
es

ul
tin

g
Bl

oc
k

(K
B)

R
esulting Block (KB)

●● Compact Blocks

Mempool=0

Mempool=100

Mempool=1000

Mempool=10000

Mempool=100000

(c) 2017 All Rights Reserved by the authors.

U N I V E R S I T Y O F M A S S A C H U S E T T S A M H E R S T

Conclusions
• Graphene’s block announcements are ⅒ the size of current methods.

• Fits within one IP packet
• No increase in roundtrip time of Compact Blocks
• Not a significant use of storage or CPU.

• Combines two known tools from set reconciliation literature in a nifty way.
• Bloom Filters and IBLTs

• PDF: http:forensics.cs.umass.edu/graphene

(c) 2017 All Rights Reserved by the authors.

(c) 2017 All Rights Reserved by the authors.

200,000

100,000

50,000

25,000

75,000

125,000

175,000

150,000

0
May June July August September October November

2017

Unconfirmed Transaction Count (Mempool)

https://core.jochen-hoenicke.de/queue/#all

(c) 2017 All Rights Reserved by the authors.

