
Graphene: A Probabilistic Data Structure for
Efficient Propagation of Large Blocks

[DRAFT 2018-09-21]

A. Pinar Ozisik†, Brian Levine†, George Bissias†, Gavin Andresen, Darren Tapp∗, Sunny Katkuri†

† College of Computer and Information Sciences, Univ. of Massachusetts, Amherst, MA 01003
∗Dash.org

Abstract

We introduce Graphene, a method and protocol for in-
teractive set reconciliation among peers in blockchains
and related distributed systems. Through the combina-
tion of a Bloom filter and an Invertible Bloom Lookup
Table (IBLT), Graphene uses a fraction of the network
bandwidth used by related work for one- and two-way
synchronization. We show that, for this specific problem,
Graphene is Ω(n logn) more efficient at reconciling n
items than using a Bloom filter at the information theo-
retic bound. We contribute a fast and implementation-
independent algorithm for parameterizing an IBLT so
that it is optimally small in size and meets a desired de-
code rate with arbitrarily high probability. We charac-
terize our performance improvements through analysis,
detailed simulation, and deployment results for Bitcoin
Cash, a prominent cryptocurrency. Our implementations
of Graphene, IBLTs, and our IBLT optimization algorithm
are all open-source code.

1 Introduction

Efficient network-based synchronization among repli-
cas that store widely propagated information is a clas-
sic need of distributed systems. Generally, guarantees
that blockchains [41,48] and protocols for distributed
consensus [21,33] can scale to a large user base rely on
assumptions about synchronization performance over a
network. Whether based on proof-of-work [32,41], proof-
of-stake [18,28], or a directed acyclic graph (DAG) [34],
these systems must work aggressively to synchronize
newly authored transactions and newly mined blocks of
validated transactions among peers.

Synchronization among peers, or set reconciliation,
is a critical factor in the performance of these systems.
Blocks that can be relayed using less bandwidth prop-
agate more quickly [22], thereby increasing consensus
among distributed peers. When peers are unsynchronized,

forks result from two miners producing competing blocks
that have the same prior block in the chain. Forks de-
lay consensus among miners and users alike until the
fork is resolved. Systems based on GHOST [44], such
as Ethereum [48], record forks on the chain forever, in-
creasing storage bloat. Using less bandwidth to relay a
block also allows greater participation by peers, who are
behind limited-bandwidth links and routes (e.g., China’s
firewall). Finally, efficiently relaying blocks allows for
the maximum block size to increase, sustaining a larger
number of transactions per second overall.

Contributions. In this paper, we introduce Graphene, a
method and protocol for synchronizing blocks (and mem-
pools) among peers in blockchains and related systems
using a fraction of the network bandwidth of related work.
For example, for larger blocks, Graphene uses 12% of
the bandwidth of existing systems. To do so, we make
novel contributions to set reconciliation methods and the
application of probabilistic data structures to real sys-
tems. We characterize our performance through analysis,
detailed simulation, and open-source deployments. Our
contributions include:

• We design a solution to the problem of efficiently stat-
ing which elements of a set M (|M|= m), stored by one
party, are members of a set N ⊆M (|N|= n) selected by
another party; and we apply it to a protocol for relaying
a block of n transaction to a peer holding m transac-
tions. We use a novel combination of a Bloom filter
and an Invertible Bloom Lookup Table (IBLT) [30].
Our approach is smaller than using deterministic solu-
tions [20] and previous IBLT-based approximate solu-
tions [25]. Further, we prove that our solution to this
specific problem (where both parties need the n trans-
actions) is an improvement of Ω(n logn) over using an
optimal Bloom filter alone.

• We extend our solution to the more general case where
N contains items not in M; we efficiently identify those
elements and transmit them. Thus, our protocol ex-

1

tension handles the case where a receiver is missing
transactions in the sender’s block; we are a small frac-
tion of the size of previous work [47] at the cost of an
additional message. Additionally, Graphene can effi-
ciently identify transactions held by the receiver but not
the sender for general synchronization scenarios.

• We design and evaluate an efficient algorithm for pa-
rameterizing an IBLT so that it is optimally small in size
but meets a desired decode rate with arbitrarily high
probability and faster execution times. This result is
applicable beyond our context.

• We design and evaluate a method for significantly im-
proving the decode rate of an IBLT when two IBLTs are
available. This is also a generally applicable method.

• We provide a detailed evaluation using simulations,
quantifying performance against existing systems. We
characterize performance of our protocol as a live Bit-
coin Cash deployment, and as an Ethereum implemen-
tation for historic blocks. We also show that Graphene
is more resilient to attack than previous approaches.

We have publicly released our Bitcoin Cash and Ethereum
implementations of Graphene [8,12], a C++ and Python
implementation of IBLTs including code for finding their
optimal parameters [7], and we have released a public
network specification of our basic protocol for standard
interoperability [9]. Its adoption is planned by block-
chain developers [4,6]. This paper improves upon our
preliminary result, published previously [2].

2 Background and Related Work

Below, we summarize and contrast related work in set
reconciliation and protocols for block propagation.

2.1 Set Reconciliation Data Structures
Set reconciliation protocols allow two peers, each holding
a set, to obtain (and transmit) the union of the two sets.
This synchronization goal is distinct from set membership
protocols [19], which tell us, more simply, if an element
is a member of a set. However, data structures that test
set membership are useful for set reconciliation. This
includes Bloom filters [14], a seminal probabilistic data
structure with myriad applications [16,36,46]. Bloom fil-
ters encode membership for a set of size n by inserting the
items into a small array of −n log2(f)

ln(2) bits; this efficiency
gain is the result of allowing a false positive rate f .

Invertible Bloom Lookup Tables (IBLTs) [30] are a
richer probabilistic data structure designed to recover the
symmetric difference of two sets of items. Like Bloom
filters, items are inserted into an IBLT’s array of c cells,
which is partitioned into subsets of size c/k. Each item
is inserted once into each of the k partitions, at indices

selected by k hash functions. Rather than storing only a
bit, the cells store the actual item. Each cell has a count
of the number of items inserted and the xor of all items
inserted (called a keySum). The following algorithm [25]
recovers the symmetric difference of two sets. Each set is
stored in an IBLT, A and B, respectively, (with equal c and
k values). For each pairwise cell of A and B, the keySums
are xor’ed and the counts subtracted, resulting in a third
IBLT: A4B =C that lacks items in the intersection. The
cells in C with count= 1 hold an item belonging to only
A, and to only B if count = –1. These items are removed
from k− 1 other cells, which decrements their counts
and allows for the additional peeling of new items. The
process continues until all cells have a count of 0. (We’ve
elided details about a checkSum field for clarity.) If c
is too small given the actual symmetric difference, then
iterative peeling will eventually fail, resulting in a decode
failure, and only part of the symmetric difference will be
recovered.

Comparison to Related Work. We provide a novel solu-
tion to the problem of set reconciliation, where one-way
or mutual synchronization of information is required by
two peers. Our results are significantly better than past
work, including those based on Bloom filters alone [47]
or IBLTs alone [25,30], as we show in Section 5.2.

In general, if we desire to decode sets of size j from
an IBLT, we must find values τ > 0 and k > 2, resulting
in c = jτ cells (divisible by k), such that the probability
of decoding is at least p. We provide an implementation-
independent algorithm for finding values τ and k that meet
rate p and result in the smallest value of c.

This is a significant advance over past work. Goodrich
and Mitzenmacher [30] provide values of τ that asymp-
totically ensure a failure rate that decreases polynomially
with j. But these asymptotic results are not optimally
small in size for finite j and do not help us set the value
of k optimally. Using their unreleased implementation,
Eppstein et al. [25] identify optimal τ and k that meet
a desired decode rate for a selection of j values; how-
ever, the statistical certainty of this optimality is unclear.
In comparison, using our open-source IBLT implementa-
tion [7], we are able to systematically produce statistically
optimal values τ and k for a wide range of j values. Our
method, based on hypergraphs, is an order of magnitude
faster than this previous method [25].

We also contribute a novel method for improving the
decode rate of IBLTs, which is complementary to related
work by Pontarelli et al. [42], who have the same goal.

2.2 Block Propagation
Blockchains, distributed ledgers, and related technology
require a network protocol for distributing new transac-
tions and new blocks. Almost all make use of a p2p

2

network of peers, often a clique among miners that vali-
date blocks, and a random topology among non-mining
full nodes that store the entire chain. New transactions
have an ID equal to their cryptographic hash. When a new
transaction is received, a peer sends the ID as the contents
of an inventory (inv) message to each of d neighbors,
who respond with a getdata message if the transaction
is new to them. Transactions are stored in a mempool until
included in a valid block. Blocks are relayed similarly:
an inv is sent to each neighbor (often the header is sent
instead to save time), and a getdata requests the block if
needed. The root of a Merkle tree [37] of all transactions
validates an ordered set against the mined block.

The block consists of a header and a set of transactions.
These transactions can be relayed by the sender in full,
but this wastes bandwidth because they are probably al-
ready stored at the receiver. In other words, blocks can
be relayed with a compressed encoding, and a number
of schemes have been proposed. As stated in Section 1,
efficient propagation of blocks is critical to achieving
consensus, reducing storage bloat, overcoming network
firewall bottlenecks, and allowing scaling to a large num-
ber of transactions per second.

Transactions that offer low fees to miners are some-
times marked as DoS spam and not propagated by full
nodes; yet, they are sometimes included in blocks, regard-
less. To avoid sending redundant inv messages, peers
keep track, on a per-transaction and per-neighbor basis,
whether an inv has been exchanged. This log can be
used by protocols to send such missing transactions to a
receiver proactively as the block is relayed.

Comparison to Related Work. Xtreme Thinblocks [47]
(XThin) is a robust and efficient protocol for relaying
blocks, and is deployed in Bitcoin Unlimited (BU) clients.
The receiver’s getdata message includes a Bloom filter
encoding the transaction IDs in her mempool. The sender
responds with a list of the block’s transaction IDs short-
ened to 8-bytes (since the risk of collision is still low),
and uses the Bloom filter to also send any transactions
that the receiver is missing. XThin’s bandwidth increases
with the size of the receiver’s mempool, which is likely
a multiple of the block size. In comparison, Graphene
uses significantly lower bandwidth both when the receiver
is and is not missing transactions. However, Graphene
may use an additional roundtrip time to repair missing
transactions.

Compact Blocks [20] is a protocol that is deployed in
all Bitcoin Core and Bitcoin ABC clients. In this proto-
col, the receiver’s getdata message is a simple request
(no Bloom filter is sent). The sender replies with the
block’s transaction IDs shorted to 6-bytes (as well as the
coinbase transaction). If the receiver has missing transac-
tions, she requests repairs with a followup inv message.
Hence, the network cost is 6n bytes, which is smaller

n in block
and

mempool

m−n
not in
block

m in mempool
n in block

x inm− x
not in
block

block
and

mempool

m in mempool

Figure 1: (Left) The receiver’s mempool contains the entire
block; Protocol 1: Graphene manages this scenario. (Right)
The receiver’s mempool does not contain the entire block.
Protocol 2: Graphene Extended manages this scenario.

than XThin’s cost of ≈ m log2(f)
8ln(2) +6n; however, when the

receiver is missing transactions, Compact Blocks has an
extra roundtrip time, which may cost more if enough
transactions are missing. Graphene is significantly lower
in cost than Compact Blocks, as we show in Section 5.2.

3 The Graphene Protocol

To motivate Graphene, consider a protocol that uses a
Bloom filter alone to encode a block containing n transac-
tions. Assume the receiver has a mempool of m transac-
tions that are a super set of the block. If we set the FPR
of the sender’s Bloom filter to f = 1

144(m−n) , then we can
expect the filter to falsely include an extra transaction in
a relayed block about once every 144 blocks (once a day
in Bitcoin). This approach requires −n log2(f)

8ln(2) bytes, and
it is easy to show that it is smaller than Compact Blocks
(6n bytes) when m < 71982340+n.

But we can do better: in Graphene, we shrink the size
of the Bloom filter by increasing its FPR, and we remove
any false positives with an IBLT. The summed size of
the two structures is smaller than using either alone. In
practice, our technique performs better than Compact
Blocks for any block with at least 100 transactions, and
we show in Section 5.2 that it performs better than any
Bloom-filter-only approach asymptotically.

We designed two protocols for Graphene, which we
define presently. Both protocols use probabilistic data
structures that fail with a tunable probability. Throughout
our exposition, we use the concept of probabilistic assur-
ance. Specifically, a property A is said to be held in data
structure X with β -assurance whenever it is possible to
tune X so that A occurs in X with probability at least β .

In Protocol 1, we assume that the receiver’s mempool
contains all transactions in the block, a typical case due to
the aggressive synchronization that blockchains employ.
This scenario is illustrated in Fig. 1-Left. As we show in
Section 5.2, mempools are sufficiently synchronized to
use only Protocol 1 about 96% of the time.

In Protocol 2, we do not assume that the receiver’s

3

mempool is synchronized, as illustrated in Fig. 1-Right,
which allows us to apply it to two scenarios: (i) block
relaying between unsynchronized peers; and (ii) intermit-
tent mempool synchronization. A receiver may not be
synchronized with the sender because of network failures,
slow transaction propagation times relative to blocks, or
if the block contains unpropagated low-fee transactions
erroneously filtered out as spam. Protocol 2 begins when
Protocol 1 fails: the receiver requests missing transactions
using a second Bloom filter; and the sender transmits any
missing transactions, along with a second IBLT to correct
mistakes. (Compact Blocks and XThin also handle this
scenario but do so with greater network bandwidth.)

3.1 Protocols

Our first protocol is for receivers whose mempool con-
tains all the transactions in the block; see Fig. 1-Left.

PROTOCOL 1: Graphene
1: Sender: The sender transmits an inv (or block-

header) for a block.

2: Receiver: The receiver requests the unknown block,
including a count of transactions in her mempool, m.

3: Sender: The sender creates Bloom filter S and IBLT
I from the transaction IDs of the block (purple area in
Fig. 1-Left). The FPR of S is fS =

a
m−n , and the IBLT

is parameterized such that a∗ items can be recovered,
where a∗ > a with β -assurance (outlined in green in
Fig. 2). We set a so as to minimize the total size of S
and I. S and I are sent to the receiver along with the
block header (if not sent in Step 1).

4: Receiver: The receiver creates a candidate set Z of
transaction IDs that pass through S, including false
positives (purple and dark blue areas in Fig. 2). The
receiver also creates IBLT I′ from Z. She subtracts
I4 I′, which evaluates to the symmetric difference
of the two sets [25]. Based on the result, she adjusts
the candidate set, validates the Merkle root in the
block header, and the protocol concludes.

The sender may already know the transactions for which
no inv message has been exchanged with the receiver
(e.g., Bitcoin’s filterInventoryKnown data structure);
those transactions could be sent at Step 3. N.b., the IBLT
stores only 8 bytes of each transaction ID; but full IDs are
used for the Bloom filter.

We use a fast algorithm to select a such that the total
amount of data transmitted over the network is optimally
small; see Section 3.3.1. We use a∗ instead of a to parame-
terize I because Bloom filters and IBLTs are probabilistic
data structures. The count of false positives from S has an
expected mean of (m− x) fS = a, whose variance comes

from a Binomial distribution with parameters (m−x) and
fS. We derive a∗ in Section 3.3.1 via a Chernoff bound.

3.2 Graphene Extended
If the receiver does not have all the transactions in the
block (Fig.1-Right), IBLT subtraction in Protocol 1 will
not decode. In that case, the receiver should continue
with the following protocol. Subsequently, we show how
this protocol can also be used for intermittent mempool
synchronization. Our contribution is not only the design
of this efficient protocol, but the derivation of parameters
that meet a desired decode rate.

PROTOCOL 2: Graphene Extended
1: Receiver: The size of the candidate set is |Z| = z,

where z = x+ y, a sum of x true positives and y false
positives (purple and dark blue areas in Fig. 3). Be-
cause the values of x and y are obfuscated within the
sum, the receiver calculates x∗ such that x∗ ≤ x with
β -assurance (green outline in Fig. 3) She also cal-
culates y∗ such that y∗ ≥ y with β -assurance (green
outline in Fig. 4).

2: Receiver: The receiver creates Bloom filter R and
adds all transaction IDs in Z to R. The FPR of the
filter is fR = b

n−x∗ , where b minimizes the size of R
and IBLT J in the next step. She sends R and b.

3: Sender: The sender passes all transaction IDs in the
block through R. She sends all transactions that are
not in R directly to the receiver (red area of Fig. 4)

4: Sender: The sender creates and sends an IBLT J of
all transactions in the block such that b+ y∗ items
can be recovered from it. This size accounts for b,
the number of transactions that falsely appear to be
in R, and y∗, the number of transactions that falsely
appear to be in S.

5: Receiver: The receiver creates IBLT J′ from the trans-
action IDs in Z. She decodes the subtraction of the
two blocks, J4 J′. From the result, she adjusts set Z,
validates the Merkle root, and the protocol concludes.

As in Protocol 1, we set b so that the summed size of R
and J is optimally small; see Section 3.3.1. We derive
closed-form solutions for x∗ and y∗; see Section 3.3.2.

3.2.1 Mempool Synchronization

With a few changes, Protocols 1 and 2 can be used by
two peers to synchronize their mempools. Instead of a
block, the sender places his entire mempool in S and I.
The receiver passes her mempool through S, adding any
negatives to H, the set of transactions that are not in S.
Some transactions that the sender does not have in his

4

n in block
and

mempool

a
FP

s f
ro

m
S

m in mempool

m−n notm−n notm−n not
in blockin blockin block

a∗>aa∗>aa∗>a

Figure 2: [Protocol 1] Passing m mem-
pool transactions through S results in a
FPs (in dark blue). A green outline illus-
trates a∗ > a with β -assurance, ensuring
IBLT I decodes.

n in block

x in block
and

mempool

m in mempool

m− x notm− x notm− x not
in blockin blockin block

y
FP

s
fr

om
S

x∗ < xx∗ < xx∗ < x

Figure 3: [Protocol 2] Passing m trans-
actions through S results in z positives,
obscuring a count of x TPs (purple) and
y FPs (in dark blue). From z, we derive
x∗ < x with β -assurance (in in green).

n in block
m in mempool

less than
m− x∗m− x∗m− x∗

not in block

y
FP

s f
ro

m
S

y∗>yy∗>yy∗>y

Figure 4: [Protocol 2] From our bound
m− x∗ > m− x with β -assurance (in yel-
low), we can derive a bound for the
false positives from S as y∗ > y with β -
assurance outlined in green.

mempool will falsely pass through S, and these are iden-
tified by I (assuming that it decodes); these transactions
are also added to H. If I does not decode, Protocol 2
is executed to find transactions in the symmetric differ-
ence of the mempools; all missing transactions among
the sender and receiver are exchanged, including those in
set H. The protocol is more efficient if the peer with the
smaller mempool acts as the sender since S will be smaller.
Section 5.2.2 shows the protocol is very efficient.

3.3 Ensuring Probabilistic Data Structure
Success

Cryptocurrencies allow no room for error: the header’s
Merkle root can be validated with an exact set of transac-
tions only. Yet, Graphene is a probabilistic solution, and
if its failure rate is high, resources are wasted on recovery.
In this section, we derive the parameters for Graphene
that ensure a tunable, very high success rate.

3.3.1 Parameterizing Bloom filter S and IBLT I

Graphene sends the least amount of data over the network
when the sum of the Bloom filter S and IBLT I is minimal.
Let T = TBF +TI be the summed size of the Bloom filter
and IBLT. The size of a Bloom filter in bytes, TBF , with
false positive rate fS and n items inserted is TBF = −n ln(fS)

8ln2 2
[14]. Recall that we recover up to a∗ items from the
IBLT, where a∗ > a with β -assurance. As we show in
Section 3.3.1, a∗ = (1+ δ)a, where δ is parameterized
by β . An IBLT’s size is a product of the number of items
recovered from a symmetric difference and a multiplier τ

that ensures recovery at a desired success rate. Therefore,
given the cost of r bytes per cell, TI is

TI = rτ(1+δ)a. (1)

When we set fS =
a

m−n , then the total size of the Bloom
filter and IBLT in bytes is

T (a) =
−n ln(a

m−n)

8ln2 2
+ rτ(1+δ)a. (2)

The value of a that minimizes T is either: a = 1; a =
m−n; or the value of a where the derivative of Eq. 2 with
respect to a is equal to zero, which is

a≈ n/(8rτ ln2 2). (3)

Eq. 3 is approximate as δ is a function of a rather than a
constant. The exact value is closed form but we omit it for
clarity. Furthermore, implementations of Bloom filters
and IBLTs involve non-continuous ceiling functions. As
a result, Eq. 3 is accurate only for a >= 100; otherwise
the critical point a′ produced by Eq. 3 can be inaccurate
enough that T (a′) is as much as 20% higher than its true
minimum value. Graphene exceeds the performance of
previous work when Eq. 3 is used to select a. However,
implementations that desire strictly optimal performance
should take an extra step. If Eq. 3 results in a value of a
less than 100, its size should be computed using accurate
ceiling functions and compared against all points a < 100.

Derivation of a∗a∗a∗. We cannot parameterize IBLT I based
on the expected number of false positives from S and
expect a high decode rate; we must account for the natural
variance of false positives generated by S. Here we derive
a closed-form expression for a∗ as a function of a and
β such that a∗ > a holds with β -assurance, i.e. a∗ > a
with probability at least β . Define A1, . . . ,Am−n to be
independent Bernoulli trials such that Pr[Ai = 1] = fS,
A = ∑

m−n
i=1 Ai, and µ = E[A].

THEOREM 1: Let m be the size of a mempool
that contains all n transactions from a block. If a is
the actual number of false positives that result from
passing the mempool through Bloom filter S with

5

FPR fS, then a∗ ≥ a with probability β when

a∗ =(1+δ)a,

where δ =
1
2
(s+

√
s2+8s) and s =

− ln(1−β)

a
. (4)

A full proof appears in Appendix A. According to The-
orem 1, if the sender sends a Bloom filter with FPR
fS =

a
m−n , then with β -assurance, no more than a∗ false

positives will be generated by passing elements from Z
though S. To compensate for the variance in false posi-
tives, IBLT I is parametrized by a symmetric difference of
a∗= (1+δ)a items. It will decode subject to its own error
rate (see Section 4), provided that a < a∗ (which occurs
with probability β) and the receiver has all n transactions
in the block. We evaluate this approach in Section 5.2;
see Fig. 10.

3.3.2 Parameterizing Bloom filter R and IBLT J

Parameterizing bbb. In Protocol 2, we select b so that the
summed size of R and J is optimally small. It’s derivation
is similar to a. We show below that y∗ = (1+δ)y. Thus:

T2(b) =
z ln(b

n−x∗)

8ln2 2
+ rτ(1+δ)b. (5)

The optimal value of b assuming continuous values is

b≈ z/(8rτ ln2 2). (6)

Similar to Section 3.3.1, an exact closed form of b exists
and we omit it for clarity; and a perfectly optimal imple-
mentation would compute T2(b) using ceiling functions
for values of b < 100.

Using z to parameterize R and J. Here we offer a closed-
form solution to the problem of parameterizing R and J.
This is a more challenging problem because x and y cannot
be observed directly.

Let z be the observed count of transactions that pass
through Bloom filter S. We know that z = x+ y: the sum
of x true positives and y false positives, illustrated as
purple and dark blue areas respectively in Fig. 3. Even
though x is unobservable, we can calculate a lower bound
x∗, depending on x, z, m, fS and β , such that x∗ ≤ x with
β -assurance, illustrated as a green outline in Fig. 3.

With x∗ in hand, we also have, with β -assurance, an
upper bound on the number of transactions the receiver is
missing: n− x∗ > n− x. This bound allows us to conser-
vatively set fR = b

n−x∗ for Bloom filter R. In other words,
since x∗ < x with β -assurance, the sender, using R, will
fail to send no more than b of the n− x transactions ac-
tually missing at the receiver. IBLT J repairs these b
failures, subject to its own error rate (see Section 4).

We also use x∗ to calculate, with β -assurance, an upper
bound y∗ ≥ y on the number of false positives that pass

through S. The green area in Fig. 4 shows y∗, which is a
superset of the actual value for y, the dark blue area.

The sender’s IBLT J contains all transactions in the
block. The receiver’s IBLT J′ contains true positives from
S, false positives from S, and newly sent transactions.
Therefore, we bound both components of the symmetric
difference by b+ y∗ transactions in order for the subtrac-
tion operation to decode. In other words, both J and J′
are parameterized to account for more items than actually
exist in the symmetric difference between the two IBLTs.

The following theorems prove values for x∗ and y∗.

THEOREM 2: Let m be the size of a mempool con-
taining 0 ≤ x ≤ n transactions from a block. Let
z = x+ y be the count of mempool transactions that
pass through S with FPR fS, with true positive count
x and false positive count y. Then x∗ ≤ x with prob-
ability β when

x∗ = argmin
x∗

Pr[x≤x∗;z,m, fS]≤ 1−β .

where Pr[x≤ k;z,m, fS]≤
k

∑
i=0

(
eδk

(1+δk)1+δk

)(m−k) fS

and δk =
z− k

(m− k) fS
−1. (7)

A full proof appears in Appendix A.

THEOREM 3: Let m be the size of a mempool con-
taining 0 ≤ x ≤ n transactions from a block. Let
z = x+ y be the count of mempool transactions that
pass through S with FPR fS, with true positive count
x and false positive count y. Then y∗ ≥ y with prob-
ability β when

y∗ = (1+δ)(m− x∗) fS,

where δ=
1
2
(s+

√
s2 +8s) and s =

− ln(1−β)

(m− x∗) fS
. (8)

A full proof appears in Appendix A.

Special case: m≈ nm≈ nm≈ n.When m≈ n, our optimization pro-
cedure in Protocol 1 will parameterize S and fS to a value
near 1, which is very efficient if the receiver has all of
the block. Unfortunately, when m ≈ n and the receiver
is missing some portion of the block, Protocol 1 will fail.
With z ≈ m, Protocol 2 will set y∗ ≈ m and x∗ ≈ 0, and
fR ≈ 1. Most importantly, IBLT J will be sized to m,
making it larger than a regular block.

Fortunately, resolution is straightforward. If Protocol 1
fails, and the receiver finds that z≈m, y∗ ≈m, and fR ≈ 1,
then in Step 2 of Protocol 2, the receiver should set fR
to a fixed value. We set fR = 0.1, but a large range of
values execute efficiently (we tested from 0.001 to 0.2).
All mempool transactions are inserted into Bloom filter
R, and R is transmitted to the sender.

6

The sender follows the protocol as usual, sending IBLT
J along with h transactions from the block not in R. How-
ever, he deviates from the protocol by also sending a third
Bloom filter F intended to compensate for false positives
from R. The roles of Protocol 2 are thus reversed: the
sender uses Theorems 2 and 3 to solve for x∗ and y∗, re-
spectively, to bound false positives from R (substituting
the block size for mempool size and fR as the FPR). He
then solves for b such that the total size in bytes is mini-
mized for F with FPR fF = b

m−h and J having size b+y∗.
This case may be common when Graphene is used for
mempool synchronization; our evaluations in Fig. 13 in
Section 5.2.2 show that our method is more efficient than
Compact Blocks.

Alternatives to Bloom filters. There are dozens of vari-
ations of Bloom filters [36,46], including Cuckoo Fil-
ters [26] and Golomb Code sets [29]. To use these alter-
natives, Eqs. 2, 3, 5, and 6 need to be updated.

4 Enhancing IBLT Performance

The success and performance of Graphene rests heavily
on IBLT performance. IBLTs have been studied in only
a handful of papers [15,25,30,38,42], and current results
are generally asymptotic with the size of the IBLT (the
notable exception is Eppstein et al. [25], which we discuss
in Section 2). In this section, we contribute several impor-
tant results that allow for IBLTs to be used in practical
systems with reliable precision. IBLTs are deceptively
challenging to parameterize so that j items can be recov-
ered with a desired success probability of p, using the
minimal number of cells. Only two parameters can be set:
the hedge factor, τ (resulting in c = jτ cells total), and
the number of hash functions, k, used to insert an item
(each function ranges over c/k cells).

Motivation. Fig. 5 motivates our contributions, showing
the poor decode rate of an IBLT if static values for k and τ

are applied to small values of j. The figure shows three de-
sired decode failure rates (1− p) in magenta: 1/24, 1/240,
and 1/2400. The black points show the decode failure
probability we observed in our IBLT implementation for
static settings of τ = 1.5 and k = 4. The resulting decode
rate is either too small from a under-allocated IBLT, or ex-
ceeds the rate through over-allocation. The colored points
show the failure rates of actual IBLTs parameterized by
the algorithm we define below: they are optimally small
and always meet or exceed the desired decode rate.

4.1 Optimal Size and Desired Decode Rate

Past work has never defined an algorithm for deter-
mining size-optimal IBLT parameters. We define an

●

●

●

●

●
●

●
●

●
●

●
●
●

●

●

●

●
●

●
●

●
●

●
●
●

●
●

●
●

●

●
●

●
●

●
●

●
●●

●

●

●
●

●
●

●

●
●

●●

●

●
●

●

●

●

●

●

●●

●

●
●
●
●●●

●

●
●
●●
●●

●
●
●
●
●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●●

●

●
●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●●
●
●
●●●

●●●
●

●
●
●●
●●●●

●●
●
●
●●
●●
●●●

●
●
●●●●●●

●
●●
●
●
●
●
●●●●

●●

●
●
●

●
●
●
●●●

●
●●●●

●
●
●
●●●

●●●●●●●●
●
●

●

●

●

●

●
●

●
●

●
●

●
●
●

●

●

●

●
●

●
●

●
●

●
●
●

●
●

●
●

●

●
●

●
●

●
●

●
●●

●

●

●
●

●
●

●

●
●

●●

●

●
●

●

●

●

●

●

●●

●

●
●
●
●●●

●

●
●
●●
●●

●
●
●
●
●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●●

●
●

●

●

●

●

●

●
●
●●

●

●

●

●
●
●●●

●
●

●
●
●

●

●
●

●
●

●
●
●

●

●●

●

●

●

●●
●

●

●●

●

●

●●
●●●

●

●

●

●

●
●

●●
●●

●

●
●
●

●
●

●
●
●

●
●
●
●

●

●●●

●

●
●●

●

●

●

●

●

●

●●●●

●
●●
●●

●

●

●●

●

●

●

●

●
●

●
●

●
●

●
●
●

●

●

●

●
●

●
●

●
●

●
●
●

●
●

●
●

●

●
●

●
●

●
●

●
●●

●

●

●
●

●
●

●

●
●

●●

●

●
●

●

●

●

●

●

●●

●

●
●
●
●●●

●

●
●
●●
●●

●
●
●
●
●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●●

●

●
●●
●
●

●

●
●

●

●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●
●

●

●

●

●

●●

●
●
●

●

●

●●

●

●

●●

●
●

●

●●●

●

●

●●●●

●●
●

●

●
●

●
●●

●●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

1/24 1/240 1/2400

0 200
400
600
800
1000
0 200
400
600
800
1000
0 200
400
600
800
1000

0.01%

0.10%

1.00%

10.00%

100.00%

j items recovered

Fa
ilu

re
 p

ro
ba

bi
lit

y
(lo

gs
ca

le
)

Figure 5: Parameterizing an IBLT statically results in poor
decode rates. The black points show the decode failure
rate for IBLTs when k = 4 and τ = 1.5. The red, green,
and blue points show decode failure rates of optimal IBLTs,
which always meet a desired failure rate on each facet (in
magenta). Size shown in Fig. 7.

implementation-independent algorithm, adopting Mal-
loy’s [40] and Goodrich and Mitzenmacher’s interpre-
tation [30] of IBLTs as examples of uniform hypergraphs.

Let H = (V,X ,k) be a k-partite, k-uniform hypergraph,
composed of c vertices V =V1∪. . .∪Vk and j hyper-edges
X , each connecting k vertices, one from each of the Vi.
The hypergraph represents an IBLT with k hash functions,
j inserted items, and c cells. Each cell corresponds to
a vertex such that |V | = c and |Vi| = c/k (we enforce
that c is divisible by k). Each item represents an edge
connecting k vertices, with the ith vertex being chosen
uniformly at random from Vi. Vertices Vi represent hash
function i, which operates over a distinct range of cells.
The r-core [43] of H is the maximal subgraph in which
all vertices have degree at least r. H contains a non-empty
2-core iff the IBLT it represents cannot be decoded.

We seek an algorithm for determining the most space-
efficient choice for c and k that is sufficient to ensure
a decode rate of p for a fixed number of inserted items
j. Items are inserted pseudo-randomly by applying the
hash functions. Therefore, it makes sense to model
the edge set X as a random variable. Define H j,p =
{(V,X ,k) | E[decode((V,X ,k))]≥ p, |X |= j}, or the set
of hypergraphs (V,X ,k) on j edges whose expected de-
code success rate is bounded by p. Based on this defini-
tion, the algorithm should return

argmin
(V,X ,k)∈H j,p

|V |. (9)

Our approach for solving Eq. 9 is to fix j, p, and k and
perform binary search over all possible values for c = |V |.
Binary search is justified by the fact that the expected
decode failure rate is a monotonically increasing function
of c, which can explained as follows. A 2-core forms in
(V,X ,k) when there exists some group of v vertices that
exclusively share a set of at least 2v edges. Define vertex
set U such that |U |> |V |. Since the j edges X are chosen

7

ALGORITHM 1: IBLT-Param-Search
01 SEARCH(j, k, p):
02 cl = 1
03 ch = cmax
04 trials == 0
05 L = (1− p)/5
06 WHILE cl 6= ch:
07 trials += 1
08 c = (cl + ch)/2
09 IF decode(j, k, c):
10 success += 1
11 conf=conf int(success, trials)
12 r = success/trials
13 IF r−conf≥ p:
14 ch = c
15 IF (r+conf≤ p):
16 cl = c
17 IF (r−conf> p−L) and (r+conf< p+L):
18 cl = c
19 RETURN ch

Figure 6: This algorithm finds the optimally small size
of c = jτ cells that decodes j items with decode success
probability p (within appropriate confidence intervals) from
an IBLT with k hash functions. decode operates over a
hypergraph rather than a real IBLT.

uniformly at random, and there are more possible edges
on vertex set U , the probability that a given set of 2v edges
forms in (U,X ,k) must be lower than in (V,X ,k).

Fig. 6 shows the pseudocode for our algorithm, which
relies on two functions. The function decode(j,k,c)

takes a random sample from the set of hypergraphs H j,p
and determines if it forms a 2-core (i.e., if it decodes),
returning True or False. The function conf int(s,t)

returns the 2-sided confidence interval of a proportion of
s successes and t trials. In practice, we call Alg. 1 only on
values of k that we have observed to be reasonable (e.g.,
3 to 15), and prune the search of each k when it is clear
that it will not be smaller in size than a known result.

We have released an open-source implementation of
IBLTs in C++ with a Python wrapper [7]. The release
includes an implementation of Alg. 1 and optimal param-
eters for several decode rates. Compared to a version
of our algorithm that uses actual IBLTs, our hypergraph
approach executes much faster for all j. For example,
to parameterize j = 100, our approach completes in 29
seconds on average. Allocating actual IBLTs with the
same code increases average run time to 426 seconds.

Fig. 7 shows the size of IBLTs when parameterized op-
timally for three different decode rates. If parameterized
correctly, the number of cells in an IBLT grows linearly,
with variations due to inherent discretization and fewer
degrees of freedom in small IBLTs.

4.2 Ping-Pong Decoding

Graphene takes advantage of its two IBLTs to increase the
decode rate for Protocol 2 in a novel fashion. IBLT’s I and

0 50 100

150

200

250

300
400
500
600
700
800
900

0

200

400

600

800

1000

1200

0

50

100

150

200

250

300

350

j items recovered

S
iz

e
(c

el
ls

)

Decode
failure rate 1/24 1/240 1/2400 static

k=4,tau=1.5

Figure 7: Size of optimal IBLTs (using Alg. 1) given a
desired decode rate; with a statically parameterized IBLT
(k = 4,τ = 1.5) in black. For clarity, the plot is split on the
x-axis. Decode rates are shown in Fig. 5.

● ● ● ● ● ● ● ● ● ●●

●

● ●

● ●

●

●

●

●

●●

●

●
●●

●●●

●●
●●

●●

●

●●
●
●

●

●●●
●
●

●

●

●

●

●

●

●

●

●●●●●●●●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●

●
● ●

● ●

●

●

●

●

●

●

●

●

●

●

● ● ● ●

●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●
●●

●●●●

●
●●●

●
●●

●
●●

●●

●

●

●●●

●

●●

●
●

●●●●●●

●

●

●●●●●●
●

●

●●

●●

●

●●

●

●

●

●

●
●

●

●

●●●

●●
●

●
●

●●

●

Items: 50 Items: 100

Items: 10 Items: 20

0 10 20 30 40 50 0 25 50 75 100

2.5 5.0 7.5 10.0 0 5 10 15 20

0.00001%

0.00010%

0.00100%

0.01000%

0.10000%

0.00001%

0.00010%

0.00100%

0.01000%

0.10000%

1

240

(
1

240
)2

1

240

(
1

240
)2

size (j) of smaller IBLT

Fa
ilu

re
 p

ro
ba

bi
lit

y
(lo

gs
ca

le
)

● ●sibling single

Figure 8: Decode rate of a single IBLT (parameterized for
a 1/240 failure rate) versus the improved ping-pong decode
rate from using a second, smaller IBLT with the same items.

J are different sizes, and may use a different number of
hash functions, but contain the same transactions. When
an IBLT fails to decode completely, it still can succeed
partially. The transactions that are decoded from J can be
removed from I, and decoding I can be retried. Transac-
tions from I can then be removed from J, and decoding J
can be retried; and so on in a ping-pong fashion. We note
that if the count of a decoded item is 1, then it should be
subtracted from the other IBLT; if the count is -1, then it
should be added to the other IBLT. The IBLTs should use
different seeds in their hash functions for independence.

Fig. 8 shows an experiment where we compared the
decode rate of a single IBLT parameterized to be opti-
mally small and recover j ∈ [10,20,50,100] items with
decode failure rate of 1− p = 1/240. We then inserted the
same items into a second IBLT parameterized to hold

8

0 < i≤ j items. When i is the same size as j, the failure
rate is (1− p)2 or lower. But improvements can be seen
for values i < j as well. When j is small, very small
values of i improve the decode rate. For larger values of
j, larger values of i are needed for decoding. The use
of ping-pong decoding on Graphene is an improvement
of several orders of magnitude; results are presented in
Fig. 11.

This approach can be extended to other scenarios that
we do not investigate here. For example, a receiver could
ask many neighbors for the same block and the IBLTs can
be jointly decoded with this approach.

5 Evaluation

Our evaluation reaches the following conclusions:
• Graphene Protocol 1 is more efficient than using a

Bloom filter alone, by Ω(n logn) bits. For all but small
n, it is more efficient than deterministic solutions.

• Using extensive Monte Carlo simulations, we show that
Graphene Protocols 1 and 2 are always significantly
smaller than Compact Blocks and XThin for a variety
of scenarios, including mempool synchronization.

• In simulation, the decode success rates of Graphene
Protocols 1 and 2 are above targeted values.

• We deployed Protocol 1 in Bitcoin Cash and show it
performs as expected, and our implementation of Proto-
col 1 for Ethereum evaluated against historic data also
shows expected gains.

5.1 Comparison to Bloom filter alone
The information-theoretic bound on the number of bits
required to exactly describe an arbitrary unordered sub-
set of n elements, chosen from a set of m elements is
dlog2

(m
n

)
e ≈ n log2(m/n) bits [17]. Carter et al. also

showed that an approximate solution to the problem has a
more efficient lower bound of−n log2(f) bits by allowing
for a false positive rate f [19].

Because our goal is to address a restricted version of
this problem, Graphene Protocol 1 is more efficient than
Carter’s bound for even an optimal Bloom filter alone.
This is because Graphene Protocol 1 assumes all n ele-
ments (transactions) are stored at the receiver, and makes
use of that information whereas a Bloom filter would not.

THEOREM 4: Relaying a block with n transac-
tions to a receiver with a mempool (a superset
of the block) of m transactions is more efficient
with Graphene Protocol 1 than using an optimally
small Bloom filter alone, when the IBLT uses k ≥ 3
hash functions. The efficiency gains of Graphene
Protocol 1 are Ω(n log2 n).

A full proof appears in Appendix B. Graphene cannot
replace all uses of Bloom filters, only those where the
elements are stored at the receiver, e.g., set reconciliation.

As m−n approaches zero, Protocol 1 shrinks its Bloom
filter and approaches an IBLT-only solution. If we check
the special case of Graphene having an FPR of 1 (equiva-
lent to not sending a Bloom filter at all) then Graphene is
as small as any IBLT-only solution, as expected; As m−n
increases, Graphene is much smaller than sticking with
an IBLT-only solution, which would have τ(m−n) cells.

Graphene is not always smaller than deterministic so-
lutions. As we show in our evaluations below, for small
values of n (about 100 or fewer), deterministic solutions
perform better. For larger values, Graphene’s savings are
significant and increase with n.

We leave analytic claims regarding Protocol 2 for future
work; however, below we empirically demonstrate its
advantage over related work.

5.2 Monte Carlo Simulation

Our comparisons are against Compact Blocks [20] be-
cause it performs well and is deployed most widely. It
does not use any probabilistic data structures. We did not
compare against XThin because it is higher bandwidth
than Compact Blocks and Graphene; as noted in Sec-
tion 2, it has the advantage over both approaches of one
less roundtrip of exchanged messages.

Methodology and Assumptions. We wrote a custom
block propagation simulator for Graphene that measures
the network bytes exchanged by peers relaying blocks.
We executed the protocol using real data structures so that
we could capture the probabilistic nature of Bloom filters
and IBLTs. Specifically, we used our publicly released
IBLT implementation and a well-known Python Bloom
filter implementation. In results below, we varied several
key parameters, including the size of the block, the size
of the receiver’s mempool, and the fraction of the block
possessed at the receiver. Each point in our plots is one
parameter combination and shows the mean of 10,000
trials or more; if no confidence interval is shown, it was
extremely small and removed for clarity. For all trials, we
used a bound of β = 239/240 (see Eqs. 18 and 30).

In all experiments, we evaluated three block sizes (in
terms of transactions): 200, which is about the average
size of Ethereum (ETH) and Bitcoin Cash (BCH) blocks;
2,000 which is the average size of Bitcoin (BTC) blocks;
and 10,000 as an example of a larger block scenario. In
expectation of being applied to large blocks and mem-
pools, we used 8-byte transaction IDs for both Graphene
and Compact Blocks. Also for Compact Blocks, we use
getdata messages with block encodings of 1 or 3 bytes,
depending on block size [20].

9

●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

200
2000

10000

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

0.5

1.0

1.5

0
5

10
15

0
20
40
60
80

Txns in mempool not in blk
 as a multiple of blk size

A
vg

 e
nc

od
in

g
si

ze
 (

K
B

)

● ●Compact Blocks Graphene

Figure 9: [Simulation, Protocol 1] Average size of Graphene
blocks versus Compact Blocks as the size of the mempool
increases as a multiple of block size. Each facet is a block
size: (200, 2000, and 10000 transactions).

5.2.1 Graphene: Protocol 1

Size of blocks. Fig. 9 shows the cost in bytes of Graphene
blocks compared to Compact Blocks. In these experi-
ments, the receiver’s mempool contains all transactions
in the block plus some additional transactions, which in-
crease along the x-axis as a multiple of the block size.
For example, at fraction 0.5 and block size 2,000, the
mempool contains 3,000 transactions in total. The ex-
periments demonstrate that Graphene’s advantage over
Compact Blocks is substantial and improves with block
size. Furthermore, the cost of Graphene grows sublin-
early as the number of extra transactions in the mempool
grows.

Decode rate. Fig. 10 shows the decode rate of Graphene
blocks, as the mempool size increases. In all cases, the
decode rate far exceeds the desired rate, demonstrating
that our derived bounds are very effective. Graphene’s
decode rate suffers when the receiver lacks the entire
block in her mempool. For example, in our experiments,
a receiver holding 99% of the block can still decode 97%
of the time. But if the receiver holds less than 98% of
the block, the decode rate for Protocol 1 is zero. Hence,
Protocol 2 is required in such scenarios.

5.2.2 Graphene Extended: Protocol 2

Our evaluations of Protocol 2 focus on scenarios where
the receiver does not possess the entire block and m > n;
we evaluate m = n as a special case.

Size by message type. Fig. 12 shows the cost of
Graphene Extended, broken down into message type, as
the fraction of the block owned by the receiver increases.
The dashed line on the plot shows the costs for Compact
Blocks, where the receiver requests missing transactions
by identifying each as a 1- or 3-byte index (depending on

● ● ● ●
●

● ● ● ● ●
●

●

●
● ●

● ●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

200
2000

10000

0 1 2 3 4 5

0.000

0.002

0.004

0.000

0.002

0.004

0.000

0.002

0.004

Txns in mempool not in blk
 as a multiple of blk size

D
ec

od
e

fa
ilu

re
 p

ro
ba

bi
lit

y

Figure 10: [Simulation, Protocol 1] Decode rate of Graphene
blocks with a Chernoff bound of β = 239

240 (red dotted line),
as block size and the number of extra transactions in the
mempool increases as a multiple of block size.

● ●

●

●

●

●

●

●
● ● ●

●

●
● ●

●
●

●

● ●● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●
●

●

●
●

●
●

● ●
●

●

● ●
●

●
●

● ●

●● ● ●

●

● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ●

●

●

● ●

●

●

●

●

●

●

● ●
●

●
●

●

●● ● ●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

200
2000

10000

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1e−05

1e−04

1e−03

1e−05

1e−04

1e−03

1e−05

1e−04

1e−03

Fraction of blk receiver has in mempool

D
ec

od
e

fa
ilu

re
 p

ro
ba

bi
lit

y
 (

lo
gs

ca
le

)

● ●with ping−pong without

Figure 11: [Simulation, Protocol 2] Decode rate of Graphene
blocks with a Chernoff bound of β = 239

240 , shown by the
red dotted line, as block size and the number of extra
transactions in the mempool increases. Error bars represent
95% confidence intervals.

block size) in the original ordered list of transactions in
the block encodings [20]. (We exclude the cost of sending
the missing transactions themselves for both protocols.)

Overall, Graphene Extended is significantly smaller
than Compact Blocks, and the gains increase as the block
size increases. For blocks smaller than 200, eventually
Compact Blocks would be smaller in some scenarios.

Decode rate.
Fig. 11 shows the decode rate of Graphene blocks; not

only does it far exceed the desired rate, but approaches
very close to 100% with the use of ping-pong decoding.

Not shown are our simulations of the Difference Di-
gest by Eppstein et al. [25], which is several times more
expensive than Graphene. The Difference Digest is an
IBLT-only solution that is an alternative to our Protocol 2.

10

200
2000

10000

0.0 0.2 0.4 0.6 0.8 1.0

0.0
0.5
1.0
1.5

0

10

20

0

50

100

Fraction of blk in mempoolA
vg

 e
nc

od
in

g
si

ze
 b

y
pa

rt
s

(K
B

) getdata BF S IBLT I BF R IBLT J

Figure 12: [Simulation, Protocol 2] Graphene Extended cost
as the fraction of the block owned by the receiver increases.
Black-dotted line is the cost of Compact Blocks.

In that work, the sender begins by telling the receiver
the value n. The receiver creates a Flajolet-Martin esti-
mate [27] of m−n using dlog2(m−n)e IBLTs each with
80 cells with roughly m elements inserted. The sender
replies with a single IBLT of twice the number of cells as
the estimate (to account for an under-estimate).

m≈ nm≈ nm≈ n and mempool synchronization. As described in
Section 3.2.1, Graphene can be used for mempool syn-
chronization, setting n to the size of the sender’s mempool.
In these cases, if the peers are mostly synchronized, then
m≈ n, which is a special case for Graphene discussed in
Section 3.3.1. Our evaluations of this scenario are shown
in Fig. 13. In these experiments, the sender’s mempool
has n transactions, of which a fraction (on the x-axis)
are in common with the receiver. The receiver’s mem-
pool size is topped off with unrelated transaction so that
m = n. As a result, Protocol 1 fails and modifications
from Section 3.3.1 are employed. As with previous ex-
periments, Graphene performs significantly better than
Compact Blocks across multiple mempool intersection
sizes and the improvement increases with block size.

5.3 Implementations

Bitcoin Cash Implementation. We coded Graphene
(Protocol 1) for Bitcoin Unlimited’s Bitcoin Cash edition
1.4.0.0, released on August 17, 2018, as an optional, exper-
imental feature at their request. Currently, 28 nodes (oper-
ated by persons unknown to us) are running Graphene on
the Bitcoin Cash mainnet. An updated count of nodes can
be found at [1]. Graphene is part of the formal plans for
two major clients on Bitcoin Cash (BCH): Unlimited [6]
and ABC [4].

Fig. 14 shows results from our own peer running the
protocol on the real network. The results show the size
of Graphene encodings when there wasn’t a Protocol

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ●

200
2000

10000

0.0 0.2 0.4 0.6 0.8 1.0

0.5
1.0
1.5

0
5

10
15
20

0
30
60
90

Fraction of txns common to mempools

A
vg

 e
nc

od
in

g
si

ze
 (

K
B

)

● ●Compact Blocks Graphene

Figure 13: [Simulation, Mempool Synchronization] Here
m = n and the peers have a fraction of the sender’s mempool
in common on the x-axis. Graphene is more efficient, and
the advantage increases with block and mempool size.

0 50 100
150
200
250
300
350
400
450

1000
2000
3000
4000
5000
6000
7000
8000
9000

0 KB

20 KB

39 KB

59 KB

78 KB

0 KB

1 KB

2 KB

3 KB

4 KB

Number of transactions in block

A
vg

 e
nc

od
in

g
si

ze

Protocol 1 Protocol 1 ordered XThin*
Failure Rate: 35/819 = 0.04

Figure 14: [Deployment on BCH, Protocol 1]: Performance
of Protocol 1 as deployed on the Bitcoin Cash network. The
node was connected to one other peer running the same
code. The x-axis is split across two facets for clarity.

1 failure; we have not deployed Protocol 2 as of yet.
Failures occurred roughly 4% of the time due to un-
synchronized mempools between our peer and our sin-
gle neighbor. Our investigations suggest that using the
filterInventoryKnown data structure would allow the
sender to predict which transactions are missing at the re-
ceiver, reducing the failure rate of Protocol 1 significantly.
This statistic also confirms our two-protocol approach:
96% of the time Protocol 1 is sufficient; and correcting
failures with Protocol 2 is needed 4% of the time. Fig. 14
also shows results from using Bitcoin Unlimited’s XThin
implementation; however, we have removed the cost of
the receiver’s Bloom filter to make the comparison fair
(hence it is labelled XThin*). The same plot separates the
costs of providing transaction ordering information; see
Section 6.2. It shows that Graphene is efficient and scales
linearly with the number of transactions in the block.

11

●●
●●●

●

●●

●

●

●●●●
●
●
●

●
●

●
●●

●
●●
●●

●

●

●

●●

●

●

●

●

●
●

●●
●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●
●
●

●
●

●
●
●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●●●

●●

●
●

●

●
●

●

●●
●

●
●●
●
●●
●
●●

●●●
●
●

●
●

●●
●
●●

●●
●●

●●

●

●

●
●
●●
●

●

●●

●

●
●

●
●

●
●●
●

●

●
●
●

●
●●

●

●

●●●●●
●

●●●
●

●

●●●
●
●

●●

●
●
●●
●

●

●

●

●

●

●

●
●
●

●●●●
●
●●●●●

●

●
●
●●

●

●●●

●

●

●

●

●
●

●

●

●●

●●

●
●●
●
●●
●
●

●

●●

●
●
●●

●●
●●●●

●●●●

●●
●●

●●
●●●

●●● ●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●
●
●

●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●
●
●●●●●●
●●●●●●●●●●●

●●

●
●

●
●
●●●●
●●●●●
●●

●

●●●
●●
●
●
●
●●●

●

●

●

●●●●●●
●●●●●●●

●●●●●●●
●●●●●●●●●●

●●●●

●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●

●
●
●

●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●
●●●●●
●●●●●●●●●●●●

●●●●●●●●●●
●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●

●●

●
●

●
●
●●●●
●●●●●
●●

●

●●●
●●
●
●
●
●●●

●

●

●

●●●●●●
●●●●●●●

●●●●●●
●
●●●●●●●●●

●●●●●

Observed vs. 8 B/txn

0 100 200 300 0 100 200 300

0 KB

1 KB

2 KB

3 KB

0 KB

10 KB

20 KB

29 KB

39 KB

Txns in block

A
vg

 e
nc

od
in

g
si

ze
●● ●● ●● ●●8 B/txn Full Blocks Protocol 1 Protocol 1 ord.

Fail Rate: 20/1756 = 0.01

Figure 15: [Implementation, Protocol 1] An implementation
of Protocol 1 for the Geth Ethereum client run on historic
data. The left facet compares against Ethereum’s use of
full blocks; the right compares against an idealized version
of Compact Blocks using 8 bytes/transaction.

Ethereum Implementation. We implemented Graphene
for Geth, Ethereum’s primary client software, and sub-
mitted a Pull Request [12]. We replayed 1,756 historic
blocks with typical block sizes, introducing new mes-
sage types to comply with Graphene’s protocol. Dur-
ing our test, the size of the mempool at the receiver
was kept constant at 60,000 transactions, which is typi-
cal (see https://etherscan.io/chart/pendingtx).
The left facet of Fig. 15 shows the size in bytes of full
blocks used by Ethereum and of Graphene. The right facet
compares Graphene (including transaction ordering infor-
mation) against a line showing 8 bytes/per transaction (an
idealization of Compact Blocks without overhead).

6 Systems Issues

6.1 Security Considerations
Malformed IBLTs. It is simple to produce an IBLT that
results in an endless decode loop for a naive implemen-
tation; the attack is just as easily thwarted. To create a
malformed IBLT, the attacker incorrectly inserts an item
into only k− 1 cells. When the item is peeled off, one
cell in the IBLT will contain the item with a count of -1.
When that entry is peeled, k−1 cells will contain the item
with a count of 1; and the loop continues. The attack is
thwarted if the implementation halts decoding when an
item is decoded twice. Once detected, the sender can be
dropped or banned by the receiver.

Manufactured Transaction Collisions. The probability
of accidental collision of two 8-byte transaction IDs in
a mempool of size m is ≈ 1−Exp

(−m(m−1)
265

)
[39]. An

attacker may use brute force search to discover and submit

collisions. SipHash [13] is used by some blockchain
protocols to limit the attack to a single peer.

With or without the use of SipHash, Graphene is more
resilient against such collisions than XThin and Compact
Blocks. Let t1 and t2 be transactions with IDs that collide
with at least 8 bytes. In the worst case, the block contains
t1, the sender has never seen t2, and the receiver possesses
t2 but has never seen t1. In this case, XThin and Compact
Blocks will always fail; however, Graphene fails with low
probability, fS · fR. For the attack to succeed, first, t2 must
pass through Bloom filter S as a full 32-byte ID, which
occurs only with probability fS. If it does pass, the IBLT
will decode but the Merkle root will fail. At this point, the
receiver will initiate Protocol 2, sending Bloom filter R.
Second, with probability fR, t1 will be a false positive in
R as a full 32-byte ID and will not be sent to the receiver.

6.2 Transaction Ordering Costs
Bloom filters and IBLTs operate on unordered sets, but
Merkle trees require a specific ordering. In our eval-
uations, we did not include the cost for the sender in
Graphene to specify the order of transactions, which is
n log2 n bits. As n grows, this cost is larger than Graphene
itself. Fortunately, the cost can be removed by block-
chains. A canonical ordering scheme could be enforced
network-wide. Alternatively, an optional ordering, such
as lexical sorting, can be specified by a miner using a
flag that is passed along with the relayed block. Several
developers have proposed a variety of ordering schemes
to support Graphene and other features [3,5,10,11].

6.3 Reducing Processing Time
Profiling our implementation code revealed that process-
ing costs are dominated heavily by passing the receiver’s
mempool against Bloom filter S in Protocol 1. Fortunately,
this cost is easily reduced. A standard Bloom filter im-
plementation will hash each transaction ID k times — but
each ID is already the result of applying a cryptographic
hash and there is no need to hash k more times; see Su-
isani et al. [45]. Instead, we break the 32-byte transaction
ID into k pieces. Applying this solution reduced average
receiver processing in our Ethereum implementation from
17.8ms to 9.5ms. Alternative techniques [23,24,31] are
also effective and not limited to small values of k.

6.4 Limitations
Graphene is a solution for set reconciliation where there
is a trade-off between transmission size, complexity (in
terms of network round-trips), and success rate. In con-
trast, popular alternatives such as Compact Blocks [20]
have predictable transmission size, fixed transmission
complexity, and always succeed. As a result, although

12

https://etherscan.io/chart/pendingtx

expected performance for each criteria is as good or bet-
ter, Graphene cannot guarantee superiority. There always
exists a non-zero probability that Graphene will fail in
Protocol 1 or 2, requiring additional round-trips. For
small set sizes (n < 100), Graphene could be inferior in
terms of transmission size. Hence, careful consideration
is necessary when deciding to deploy Graphene.

7 Conclusions

We introduced a novel solution to the problem of deter-
mining a subset of items from a larger set two parties
hold in common, using a novel combination of Bloom
filters and IBLTs. We also provided a solution to the more
general case, where one party is missing some or all of
the subset. Specifically, we described how to parametrize
the probabilistic data structures in order to meet a desired
decode rate. Through a detailed evaluation using sim-
ulations and real-world deployment, we compared our
method to existing systems, showing that it requires less
data transmission over a network and is more resilient to
attack than previous approaches.

Acknowledgements. This work was funded in part by
Bitcoin Unlimited, and was performed in part using high
performance computing equipment obtained under a grant
from the Collaborative R&D Fund managed by the Mas-
sachusetts Technology Collaborative. We are grateful for
insightful feedback from Andrew Stone, Peter Tschipper,
Andrea Suisani, Awemany, and Peter Rizun.

References
[1] Bitcoin Cash Nodes. https://cashnodes.io/nodes. Search

for “graphene”.

[2] A. PINAR OZISIK AND GAVIN ANDRESEN AND GEORGE BIS-
SIAS AND AMIR HOUMANSADR AND BRIAN NEIL LEVINE.
Graphene: A New Protocol for Block Propagation Using
Set Reconciliation. Proc. of International Workshop on Cryp-
tocurrencies and Blockchain Technology (ESORICS Workshop).
http://forensics.cs.umass.edu/pubs/ozisik.cbt2017.pdf.

[3] AWEMANY. TopoCanonical ordering - and more effi-
cient graphene transmission. https://github.com/

BitcoinUnlimited/BitcoinUnlimited/pull/1275, Aug
20 2018.

[4] BITCOIN ABC. The Bitcoin ABC Vision. https:

//medium.com/@Bitcoin_ABC/the-bitcoin-abc-

vision-f7f87755979f, Aug 24 2018.

[5] BITCOIN ABC. Benefits of Canonical Transaction Order.
https://www.bitcoinabc.org/2018-08-15-benefits-

of-ctor/, Aug 15 2018.

[6] BITCOIN UNLIMITED. Bitcoin Cash Development And Test-
ing Accord: Bitcoin Unlimited Statement. https://www.

bitcoinunlimited.info/cash-development-plan, 2018.

[7] BRIAN LEVINE AND GAVIN ANDRESEN. IBLT Opti-
mization (open-source repository). https://github.com/umass-
forensics/IBLT-optimization, August 2018.

[8] GEORGE BISSIAS. Graphene Pull Request. https://github.
com/BitcoinUnlimited/BitcoinUnlimited/pull/973,
July 2018.

[9] GEORGE BISSIAS AND BRIAN LEVINE. BUIP093: Graphene
Relay. https://github.com/BitcoinUnlimited/BUIP/

blob/master/093.mediawiki, July 26 2018.

[10] SHAMMAH CHANCELLOR. Sharding Bitcoin Cash .
https://medium.com/@Bitcoin_ABC/sharding-bitcoin-

cash-35d46b55ecfb, Aug 27, 2018.

[11] STONE, G. ANDREW. Why ABC’s CTOR Will Not
Scale. https://medium.com/@g.andrew.stone/why-abcs-
ctor-will-not-scale-8a6c6cf4a441, Sept 7 2018.

[12] SUNNY KATKURI. Improve block transfer efficiency us-
ing Graphene #17724. https://github.com/ethereum/go-

ethereum/pull/17724, Sept 20 2018.

[13] AUMASSON, J.-P., AND BERNSTEIN, D. J. SipHash: A Fast
Short-Input PRF. In Progress in Cryptology (INDOCRYPT)
(2012), pp. 489–508.

[14] BLOOM, B. H. Space/Time Trade-offs in Hash Coding with
Allowable Errors. Commun. ACM 13, 7 (July 1970), 422–426.

[15] BORAL, A., AND MITZENMACHER, M. Multi-party set reconcil-
iation using characteristic polynomials. In Proc. Annual Allerton
Conference on Communication, Control, and Computing (Oct
2014).

[16] BRODER, A., AND MITZENMACHER, M. Network applications
of bloom filters: A survey. Internet mathematics 1, 4 (2004),
485–509.

[17] BRODNIK, A., AND MUNRO, J. I. Membership in constant time
and almost-minimum space. SIAM Journal on Computing 28, 5
(1999), 1627–1640.

[18] BUTERIN, V., AND GRIFFITH, V. Casper the friendly finality
gadget. https://arxiv.org/abs/1710.09437, Oct 2017.

[19] CARTER, L., FLOYD, R., GILL, J., MARKOWSKY, G., AND
WEGMAN, M. Exact and approximate membership testers. In
Proceedings of the Tenth Annual ACM Symposium on Theory
of Computing (New York, NY, USA, 1978), STOC ’78, ACM,
pp. 59–65.

[20] CORALLO, M. Bip152: Compact block relay. https://github.
com/bitcoin/bips/blob/master/bip-0152.mediawiki,
April 2016.

[21] DANEZIS, G., AND MEIKLEJOHN, S. Centrally banked cryp-
tocurrencies. In Proc. Network and Distributed System Security
Symposium (NDSS) (Feb 2016).

[22] DECKER, C., AND WATTENHOFER, R. Information Propagation
in the Bitcoin Network. In 13th IEEE International Conference on
Peer-to-Peer Computing (P2P), Trento, Italy (September 2013).

[23] DILLINGER, P. C., AND MANOLIOS, P. Bloom filters in prob-
abilistic verification. In In Proceedings of the 5th International
Conference on Formal Methods in Computer-Aided Design (FM-
CAD (2004), Springer-Verlag, pp. 367–381.

[24] DILLINGER, P. C., AND MANOLIOS, P. Fast and accurate bitstate
verification for spin. Lecture Notes in Computer Science (2004),
57–75.

[25] EPPSTEIN, D., GOODRICH, M. T., UYEDA, F., AND VARGHESE,
G. What’s the Difference?: Efficient Set Reconciliation Without
Prior Context. In ACM SIGCOMM (2011).

[26] FAN, B., ANDERSEN, D. G., KAMINSKY, M., AND MITZEN-
MACHER, M. D. Cuckoo filter: Practically better than bloom. In
Proc. ACM CoNEXT (2014), pp. 75–88.

13

https://cashnodes.io/nodes
https://github.com/BitcoinUnlimited/BitcoinUnlimited/pull/1275
https://github.com/BitcoinUnlimited/BitcoinUnlimited/pull/1275
https://medium.com/@Bitcoin_ABC/the-bitcoin-abc-vision-f7f87755979f
https://medium.com/@Bitcoin_ABC/the-bitcoin-abc-vision-f7f87755979f
https://medium.com/@Bitcoin_ABC/the-bitcoin-abc-vision-f7f87755979f
https://www.bitcoinabc.org/2018-08-15-benefits-of-ctor/
https://www.bitcoinabc.org/2018-08-15-benefits-of-ctor/
https://www.bitcoinunlimited.info/cash-development-plan
https://www.bitcoinunlimited.info/cash-development-plan
https://github.com/BitcoinUnlimited/BitcoinUnlimited/pull/973
https://github.com/BitcoinUnlimited/BitcoinUnlimited/pull/973
https://github.com/BitcoinUnlimited/BUIP/blob/master/093.mediawiki
https://github.com/BitcoinUnlimited/BUIP/blob/master/093.mediawiki
https://medium.com/@Bitcoin_ABC/sharding-bitcoin-cash-35d46b55ecfb
https://medium.com/@Bitcoin_ABC/sharding-bitcoin-cash-35d46b55ecfb
https://medium.com/@g.andrew.stone/why-abcs-ctor-will-not-scale-8a6c6cf4a441
https://medium.com/@g.andrew.stone/why-abcs-ctor-will-not-scale-8a6c6cf4a441
https://github.com/ethereum/go-ethereum/pull/17724
https://github.com/ethereum/go-ethereum/pull/17724
https://arxiv.org/abs/1710.09437
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki

[27] FLAJOLET, P., AND MARTIN, G. N. Probabilistic counting
algorithms for data base applications. Journal of Computer and
System Sciences 31, 2 (1985), 182 – 209.

[28] GILAD, Y., HEMO, R., MICALI, S., VLACHOS, G., AND ZEL-
DOVICH, N. Algorand: Scaling byzantine agreements for cryp-
tocurrencies. In Proc. Symposium on Operating Systems Principles
(SOSP) (2017), pp. 51–68.

[29] GOLOMB, S. W. Run-length encodings, determining explicit form
of huffman coding when applied to geometric distribution. EEE
Trans Info Theory 12, 3 (1966), 399–401.

[30] GOODRICH, M., AND MITZENMACHER, M. Invertible bloom
lookup tables. In Conf. on Comm., Control, and Computing (Sept
2011), pp. 792–799.

[31] KIRSCH, A., AND MITZENMACHER, M. Less hashing, same
performance: Building a better bloom filter. In Algorithms – ESA
2006 (Berlin, Heidelberg, 2006), Y. Azar and T. Erlebach, Eds.,
Springer Berlin Heidelberg, pp. 456–467.

[32] KOGIAS, E. K., JOVANOVIC, P., GAILLY, N., KHOFFI, I.,
GASSER, L., AND FORD, B. Enhancing bitcoin security and
performance with strong consistency via collective signing. In
Proc. USENIX Security Symposium (2016), pp. 279–296.

[33] KOKORIS-KOGIAS, E., JOVANOVIC, P., GASSER, L., GAILLY,
N., SYTA, E., AND FORD, B. OmniLedger: A Secure, Scale-Out,
Decentralized Ledger via Sharding. In Proc. IEEE Symposium on
Security and Privacy (May 2018), pp. 583–598.

[34] LEWENBERG, Y., SOMPOLINSKY, Y., AND ZOHAR, A. Inclusive
block chain protocols. In Proc. International Conference on Fi-
nancial Cryptography and Data Security (Jan 2015), pp. 528–547.

[35] LOVE, E. R. Some logarithm inequalities. The Mathematical
Gazette (The Mathematical Association) 63, 427 (https://www.
jstor.org/stable/3615890 1980), 55–57.

[36] LUO, L., GUO, D., MA, R. T., ROTTENSTREICH, O., AND
LUO, X. Optimizing bloom filter: Challenges, solutions, and
comparisons. arXiv preprint arXiv:1804.04777 (2018).

[37] MERKLE, R. C. A digital signature based on a conventional
encryption function. In Advances in Cryptology — CRYPTO ’87
(Berlin, Heidelberg, 1988), C. Pomerance, Ed., Springer Berlin
Heidelberg, pp. 369–378.

[38] MITZENMACHER, M., AND PAGH, R. Simple multi-party set
reconciliation. Distributed Computing (Oct 2017).

[39] MITZENMACHER, M., AND UPFAL, E. Probability and Comput-
ing: Randomized Algorithms and Probabilistic Analysis. Cam-
bridge University Press, 2005.

[40] MOLLOY, M. The pure literal rule threshold and cores in ran-
dom hypergraphs. In Proceedings of the Fifteenth Annual ACM-
SIAM Symposium on Discrete Algorithms (Philadelphia, PA, USA,
2004), SODA ’04, Society for Industrial and Applied Mathematics,
pp. 672–681.

[41] NAKAMOTO, S. Bitcoin: A Peer-to-Peer Electronic Cash System,
May 2009.

[42] PONTARELLI, S., REVIRIEGO, P., AND MITZENMACHER, M.
Improving the performance of Invertible Bloom Lookup Tables.
Information Processing Letters 114, 4 (2014), 185 – 191.

[43] SEIDMAN, S. B. Network structure and minimum degree. Social
Networks 5, 3 (1983), 269 – 287.

[44] SOMPOLINSKY, Y., AND ZOHAR, A. Secure high-rate transaction
processing in Bitcoin. Financial Cryptography and Data Security
(2015).

[45] SUISANI, A., CLIFFORD, A., STONE, A., BEIJNOFF, E., RIZUN,
P., TSCHIPPER, P., FEDOROVA, A., FENG, C., LEMIEUX, V.,
AND MATTHEWS, S. Measuring maximum sustained transaction
throughput on a global network of Bitcoin nodes. In Proc. Scaling
Bitcoin (November 2017).

[46] TARKOMA, S., ROTHENBERG, C. E., AND LAGERSPETZ, E.
Theory and practice of bloom filters for distributed systems. IEEE
Communications Surveys Tutorials 14, 1 (First 2012), 131–155.

[47] TSCHIPPER, P. BUIP010 Xtreme Thinblocks. https:

//bitco.in/forum/threads/buip010-passed-xtreme-

thinblocks.774/, Jan 2016.

[48] WOOD, G. Ethereum: A secure decentralised generalised transac-
tion ledger. https://ethereum.github.io/yellowpaper/

paper.pdf, June 2018.

A Theorems from Section 3.3

For completeness, we provide the proof of a well-known
version of Chernoff bounds that appears commonly in lec-
ture notes, but not in any formal reference to our knowl-
edge.

LEMMA 1: Let A be the sum of i independent
Bernoulli trials A1, . . . ,Ai, with mean µ = E[A].
Then for δ > 0

Pr[A≥ (1+δ)µ]≤ Exp
(
− δ 2

2+δ
µ

)
, (10)

PROOF: Starting from the well-known Chernoff bound
[39]:

Pr[A≥ (1+δ)µ]≤
(

eδ

(1+δ)1+δ

)µ

(11)

= Exp(µ(δ − (1+δ)ln(1+δ))) (12)

≤ Exp
(

µ

(
δ − (1+δ)

(
2δ

2+δ

)))
(13)

= Exp
(−δ 2

2+δ
µ

)
(14)

Above, we rely on the inequality ln(1+x)≥ x
1+x/2 = 2x

2+x

for x > 0 (see [35]), and that ea−b ≤ ea−c when b≥ c.
2

THEOREM 1: Let m be the size of a mempool
that contains all n transactions from a block. If a is
the actual number of false positives that result from
passing the mempool through Bloom filter S with
FPR fS, then a∗ ≥ a with probability β when

a∗ =(1+δ)a,

where δ =
1
2
(s+

√
s2+8s) and s =

− ln(1−β)

a
.

(15)

PROOF: There are m− n potential false positives that
pass through S. They are a set A1, . . . ,Am−n of inde-
pendent Bernoulli trials such that Pr[Ai = 1] = fS. Let

14

https://www.jstor.org/stable/3615890
https://www.jstor.org/stable/3615890
https://bitco.in/forum/threads/buip010-passed-xtreme-thinblocks.774/
https://bitco.in/forum/threads/buip010-passed-xtreme-thinblocks.774/
https://bitco.in/forum/threads/buip010-passed-xtreme-thinblocks.774/
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf

A = ∑
m−n
i=1 Ai and µ = E[A] = fS(m−n) = a

m−n (m−n) =
a. From Lemma 1, we have

Pr[A≥ (1+δ)µ]≤ Exp
(
− δ 2

2+δ
µ

)
, (16)

for δ ≥ 0. The receiver can set a bound of choice,
0 < β < 1, and solve for δ using the right hand side of
Eq. 16. To bound with high probability, we seek the
complement of the right hand side

β = 1−Exp
(
− δ 2

2+δ
a
)

(17)

δ =
1
2
(s+

√
s2 +8s), where s =

− ln(1−β)

a
. (18)

2

THEOREM 2: Let m be the size of a mempool con-
taining 0 ≤ x ≤ n transactions from a block. Let
z = x+ y be the count of mempool transactions that
pass through S with FPR fS, with true positive count
x and false positive count y. Then x∗ ≤ x with prob-
ability β when

x∗ = argmin
x∗

Pr[x≤x∗;z,m, fS]≤ 1−β .

where Pr[x≤ k;z,m, fS]≤
k

∑
i=0

(
eδk

(1+δk)1+δk

)(m−k) fS

and δk =
z− k

(m− k) fS
−1. (19)

PROOF: We can’t observe the values x or y, but whatever
their real values, we know their dependency: Y = ∑

m−x
i=1 Yi,

where Y1, . . . ,Ym−x are independent Bernoulli trials such
that Pr[Yi = 1] = fS.

For a given value x, we can compute Pr[Y ≥ y], the
probability of at least y false positives passing through the
sender’s Bloom filter. We apply a Chernoff bound [39]:

Pr[y;z,x,m] =

Pr[Y ≥ (1+δ)µ]≤
(

eδ

(1+δ)1+δ

)µ

(20)

where δ > 0, and µ = E[Y] = (m− x) fS. By setting
(1+δ)µ = z− x and solving for δ , we have

(1+δ)(m− x) fS = z− x (21)

δ =
z− x

(m− x) fS
−1. (22)

We substitute δ into Eq. 20 and bound the probability
of observing a value of y = z− x or greater, given that
the receiver has x transactions in the block. This real-
ization allows us to enumerate all possible scenarios for
observation z. The cumulative probability of observing y,

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●
● ● ● ●

●
● ● ●

●
● ●

●
● ● ●

●
●

● ● ● ●
●

●
●

●
●

200
2000

10000

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.996
0.997
0.998
0.999
1.000

0.996
0.997
0.998
0.999
1.000

0.996
0.997
0.998
0.999
1.000

Fraction of block in mempool

F
ra

ct
io

n
of

 ti
m

e
x*

 is
 a

 lo
w

er
 b

ou
nd

Figure 16: [Simulation] The fraction of Monte Carlo experi-
ments where x∗ < x via Theorem 2 compared to a desired
bound of β = 239/240 (shown as a dashed red line).

parametrized by z, given that the receiver has at most k of
the transactions in the block, is:

Pr[x≤ k;z,m, fS] =
k

∑
i=0

Pr[y;z,k,m] (23)

≤
k

∑
i=0

(
eδk

(1+δk)1+δk

)(m−k) fS

(24)

where δk =
z−k

(m−k) fS
−1. Finally, using this closed-form

equation, we select a bounding probability β , such as
β = 239/240. We seek a probability β of observing z
from a value x∗ or larger; equivalently, we solve for the
complement:

argmin
x∗

Pr[x≤ x∗;z,m, fS]≤ 1−β . (25)

To summarize, x∗ is the smallest number of true positives
such that the cumulative probability of observing y =
z− x∗ false positives is at least 1−β .

2

For good measure, we validated the theorem empiri-
cally, as shown in Fig. 16.

THEOREM 3: Let m be the size of a mempool con-
taining 0 ≤ x ≤ n transactions from a block. Let
z = x+ y be the count of mempool transactions that
pass through S with FPR fS, with true positive count
x and false positive count y. Then y∗ ≥ y with prob-

15

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●

●
● ● ● ● ● ● ● ● ●

● ●
● ●

● ●

●

●

●

●

●

●
●

●

●

●
●

● ●

●

●

●

●

●

200
2000

10000

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.996
0.997
0.998
0.999
1.000

0.996
0.997
0.998
0.999
1.000

0.996
0.997
0.998
0.999
1.000

Fraction of block in mempool

F
ra

ct
io

n
of

 ti
m

e
y*

 is
 a

n
up

pe
r

bo
un

d

Figure 17: [Simulation, Protocol 2] The fraction of Monte
Carlo experiments where y∗ > y via Theorem 3 compared
to a desired bound of β = 239/240 (shown as a dashed red
line).

ability β when

y∗ = (1+δ)(m− x∗) fS,

where δ=
1
2
(s+

√
s2 +8s) and s =

− ln(1−β)

(m− x∗) fS
.

(26)

PROOF: First, we solve for x∗ ≤ x with β -assurance
using Theorem 2. We find y∗ = z− x∗ ≥ y by applying
Lemma 1 to Y = ∑

m−x∗
i=1 , the sum of m− x∗ independent

Bernoulli trials such that Pr[Yi = 1] = fS trials and µ =
(m− x∗) fS:

Pr[Y ≥ (1+δ)µ]≤ Exp
(
− δ 2

2+δ
µ

)
, (27)

for δ ≥ 0. We select 0 < β < 1, and solve for δ using the
right hand side of Eq. 27. To bound with high probability,
we seek the complement of the right hand side.

β = 1−Exp
(
− δ 2

2+δ
(m− x∗) fS

)
(28)

(29)

δ =
1
2
(s+

√
s2 +8s), where s =

− ln(1−β)

(m− x∗) fS
(30)

Then, we set

y∗ = (1+δ)(m− x∗) fS. (31)

Since, x∗ ≤ x with β -assurance, it follows that y∗ also
bounds the sum of m− x Bernoulli trials, where

y∗ = (1+δ)(m− x) fS, (32)

with probability at least β for any δ ≥ 0 and m > 0.
2

We validated this theorem empirically as well, as shown
in Fig. 17.

B Theorems from Section 5.1

THEOREM 4: Relaying a block with n transac-
tions to a receiver with a mempool (a superset
of the block) of m transactions is more efficient
with Graphene Protocol 1 than using an optimally
small Bloom filter alone, when the IBLT uses k ≥ 3
hash functions. The efficiency gains of Graphene
Protocol 1 are Ω(n log2 n).

PROOF: We assume that m= cn for some constant c> 1.
Our proof is asymptotic. Thus, according to the law of
large numbers, every value δ > 0 (where δ is defined as
in Theorem 1) is sufficient to achieve β -assurance when
choosing values for a∗, x∗, and y∗. Accordingly, we may
proceed under the assumption that δ = 0, i.e. there is
no need to hedge the false positive rate of either Bloom
filter lower to account for deviations because the observed
false positive rate will always match its expected value
asymptotically.

Let f , where 0 < f < 1, be the FPR of a Bloom filter
created in order to correctly identify n≥ 1 elements from
a set of m≥ 1 elements. The size of the Bloom filter that
has FPR, f , with n items inserted, is −n log2(f) bits [19].
Let f = p

m−n , where 0 < p < 1. The expected number of
false positives that can pass through the Bloom filter is
(m−n) p

(m−n) = p. Since 0 < p < 1, one out of every 1/p
Bloom filters is expected to fail.

To correctly identify the same set of items, Graphene
instead uses a Bloom filter with f = a

m−n , where we set
a = n/rt since the Bloom filter is optimal, and use an
IBLT with aτ cells (r bytes each) that decodes with proba-
bility p. The expected number of false positives that pass
through Graphene’s Bloom filter is (m− n) a

(m−n) = a.
An IBLT with 1 to a items inserted in it decodes with
probability 1− p. In other words, one out of every 1/p
Graphene blocks is expected to fail.

The difference in size is

−n log2

(
p

m−n

)
−
(
−n log2

(
a

m−n

)
+arτ

)
(33)

=n log2(a/p)−arτ (34)
=n(log2 n+ log2

1/pτ)−1) (35)
=n(log2 n+Ω(τ2−k)) (36)
=Ω(n(log2 n)), (37)

where Eq. 36 follows from Theorem 1 from Goodrich
and Mitzenmacher [30], given that we have an IBLT with
k ≥ 3 hash functions.

2

16

	Introduction
	Background and Related Work
	Set Reconciliation Data Structures
	Block Propagation

	The Graphene Protocol
	Protocols
	Graphene Extended
	Mempool Synchronization

	Ensuring Probabilistic Data Structure Success
	Parameterizing Bloom filter S and IBLT I
	Parameterizing Bloom filter R and IBLT J

	Enhancing IBLT Performance
	Optimal Size and Desired Decode Rate
	Ping-Pong Decoding

	Evaluation
	Comparison to Bloom filter alone
	Monte Carlo Simulation
	Graphene: Protocol 1
	Graphene Extended: Protocol 2

	Implementations

	Systems Issues
	Security Considerations
	Transaction Ordering Costs
	Reducing Processing Time
	Limitations

	Conclusions
	Theorems from Section 3.3
	Theorems from Section 5.1

